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AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM II

PART I THEORY

By E. Bonner, W. Clever, K. Dunn

North American Aircraft Operations, Rockwell International

SUMMARY

An aerodynamic analysis system based on potential theory at subsonic/

supersonic speeds and impact type finite element solutions at hypersonic

conditions is described. Three-dimensional configurations having multiple

non-planar surfaces of arbitrary planform and bodies of non-circular contour

may be analyzed. Static, rotary, and control longitudinal and lateral-

directional characteristics may be generated.

The analysis has been implemented on a time sharing system in

conjunction with an input tablet digitizer and an interactive graphics

input/output display and editing terminal to maximize its responsiveness to

the preliminary analysis problem. Computation times on an IBM 3081 are

typically less than one minute of CPU/Mach number at subsonic, supersonic or

hypersonic speeds. Computation times on PRIME 850 or a VAX 11/785 are about

fifteen times longer than on the IBM. The program provides an efficient

analysis for systematically performing various aerodynamic configuration
tradeoff and evaluation studies.
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INTRODUCTION

Aerodynamic numerical analysis has developed to a point where

evaluation of complete aircraft configurations by a single program is

possible. Programs designed for this purpose in fact currently exist, but

are limited in scope and abound with subtleties requiring the user to be

highly experienced. Many of the difficulties are attributable to the

numerical sensitivity of the associated solution. In preliminary design

stages, some degree of approximation is acceptable in the interest of modest

turn-around time, reduced computational costs, simplification of input, and

stability and generality of results. The importance of short elapsed time

stems from the necessity to systematically survey a large number of

candidate advanced configurations or major component geometric parameters in

a timely manner. Modest computational cost allows a greater number of

configurations and/or conditions to be economically investigated.

One approach in this spirit is to employ panel approximations which

reduce the number of simultaneous equations required to satisfy flow

boundary conditions. Surface chord plane formulations, locally two

dimensional crossflow body solutions and non-interfering panel

simplifications are examples of approximations which can be used for this

purpose. An alternative approach is to use surface chord plane formulations

again for thin surfaces which can carry lift and surface panels for thick

body type regions.

Finite element analysis when combined with realistic assessment of

limitations and estimated viscous characteristics provides a valuable tool

for analyzing general aircraft configurations and aerodynamic interactions

at modest attitudes for subsonic/supersonic speeds and evaluation of

compressible non-linearities at high Mach numbers.
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SUBSONIC/SUPERSONIC

The arbitrary configurations which maybe treated by the analysis are
simulated by a distribution of source and vortex singularities. Each of
these singularities satisfies the linearized small perturbation potential
equation of motion

2

4xx + 4yy + 4zz = 0

The singularity strengths are obtained by satisfying the condition that

the flow is tangent to the local surface:

8@/On = 0

All of the resulting velocities and pressures throughout the flow may be

obtained when the singularity strengths are known. A configuration is

composed of bodies, interference shells and aerodynamic surfaces (wings,

canards, tails etc.). There are two alternative types of singularities used

to represent the configuration. Figure I shows the first type, which can be

used at all Mach numbers, and figure 2 shows an alternative method, which

can be used only at subsonic Mach numbers.

wing and vertical tail

chord plane source and vortex panels -

fuselage and nacelles _ _ _Jx

s face sourle llne segments

" vortex panels

Figure I A. Singularities Used to Simulate a Configuration.



In the first method, the first step in the solution procedure consists

of obtaining the strengths of the singularities simulating the fuselage and

nacelles, from an isolated body solution. The present analysis uses

slender-body theory to predict the surface and near field properties. The

solution is composed of a compressible axisymmetric component for a body of

revolution of the same cross-sectional area and an incompressible crossflow

component, 4 , satisfying the local three dimensional boundary conditions in

the (y,z) plane. The crossflow is a solution of Laplace's equation

_yy + _zz - 0

A two-dimensional surface source distribution formulation is used to obtain

this solution. When the body singularity strengths are determined, the

perturbation velocities which they induce on the aerodynamic surfaces, or

other regions of the field, are evaluated.

The assumptions of thin airfoil theory allow the effects of thickness

and lift on aerodynamic surfaces to be considered independently. Therefore,

the effects of the aerodynamic surfaces can be simulated by source and

vortex singularities accounting for the effects of thickness and lift,

respectively. The source and vortex distributions used in this program are

in the form of quadrilateral panels having a constant source or vortex

strength. The vortex panels have a system of trailing vorticies extending

undeflected to downstream infinity. The use of a chordwise linearly varying

source panel is provided as an a option to eliminate singularities

associated with sonic panel edges at supersonic Mach numbers. The panels

are planar, that is they have no incidence to the free stream (although

dihedral may be included), since thin airfoil theory allows the transfer of

the singularities and boundary conditions to the plane of the mean chord.

These boundary conditions are satisfied at a single control point on each

panel. For thickness, the control point is located at the panel centroid

while the effects of twist, camber, and angle of attack are satisfied at the

spanwise centroid of each vortex panel and at 87.5 percent of its chord.

A cylindrical, non-circular, interference shell, composed entirely of

vortex panels, is used to account for the interference effects of the

aerodynamic surfaces on the fuselage and nacelles. The boundary conditions

on an interference shell are such that the velocity normal to the shell

induced by all singularities, except those of the body which it surrounds,

is zero. The boundary conditions are satisfied at the usual control points

for vortex panels.

The second alternative method uses constant doublet panels and constant

source panels to represent the body surface. These panels can be of an

arbitrary quadrilateral shape and may be inclined to the direction of flow.

The aerodynamic surfaces are represented by the same type of chord plane

source and vortex panels as were used in the first method.



Alternative method for subsonic flow only

wing and vertical tail

chord plane source and vortex panels -

fuselage

- surface source and doublet panels -

x

Figure i B. Singularities Used to Simulate a Configuration (M < i).

This second method can be used at subsonic Mach numbers only. At

supersonic Mach numbers, the doublet panels, which are equivalent to

quadrilateral vorticies, produce infinite perturbation velocities in certain

regions of the flow, and thus cannot be used. The body source and doublet

strengths are chosen to satisfy both an arbitrary normal velocity boundary

condition on the body,

a@lSn - V
n

and to have zero perturbation potential in the entire region interior to the

body surface.

_=0

The following sections define the details of the solution procedure.

Included are discussions of the isolated body analysis, surface finite

element analysis considering edge effects, and evaluation of aerodynamic

characteristics including drag. References are cited for the reader

interested in further pursuing a particular point.



SLENDER BODY SOLUTION

1 2
According to slender body theory ' the flow disturbance near a

sufficiently regular three-dimensional body may be represented by a

perturbation potential of the form

- _(y,z;x) + g(x) (i)

_(y,z;x) is a solution of the 2-D Laplace equation in the (y,z) cross flow

plane satisfying the following boundary conditions

V_ - jv + kw = 0

8_/an - O, on C(x) (2)

C(x) and n are defined in figure 2. A general solution for _ may be written

as the real part of a complex potential function W(Z) with Z - y+iz.

- R W = R [ A0(x)in Z +
e e

oo

An(X)Z_n ]

n=l

A useful alternative representation of _ and W is obtainable with the aid of
3

Green's theorem.

r
R W - -2 R ® a(f)in(Z-f)dsI

e e J
C(x)

(3)

where a(f) is a "source" density for values of f - Yc + iz

coordinates of a point on the contour C(x).

c' (yc,Zc) being

The function g(x) obtained by matching _ of equation (i) which is valid

in the neighborhood of the body with an appropriate "outer" solution, g(x)

is then found to depend explicity on the Mach number M and longitudinal

variation of cross-sectional areas S(x)

g(x) - I/(2_)[S'(x)In(0.5_)-I/2_S"(t)In(x-t)dt +I/2[IS"-x (t)in(t-x)dt

-1/2 S'(0)In x -1/2 S'(1)in(l-x)]

ixg(x) - 1/(2_)[ S'(x)ln(0.5_) - S"(t)ln(x-t)dt]
oO

M<I

M>I

(4)

The body axis perturbation velocities are obtained by differintiation

of equation (I)
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u = 4x = _x + g'(x)

v = 4y

W z _Z

At supersonic speeds, zone of influence considerations require that u - v -

w = 0 for x - _ r < 0.

Solution of the preceding equations is based on an extension of the
method of reference 3.

CROSS FLOW COMPONENT

The reduction of computations to a numerical procedure utilizes the

integral representation of _ given in equation (3) by discretization of the

cross-sectional boundary into a large number of short linear segments

(figure 3) over each of which the source density a is assumed constant at a

value determined by boundary conditions.

Computation of a(i,n) over the segment i, i+l proceeds by applying the

boundary condition equation (2) at each segment of C . If V_ = q = _v + kw
n

represents the velocity vector, the corresponding complex velocity in the

cross flow plane is obtained by differentiation of W in equation (3) with

respect to Z:

v - iw = -2_ a(f)/(Z-_) ds (5)

The contribution by the sources located on segment i, i+l to the velocity at

P., is first evaluated. Noting that i, i+l makes an angle 0(i,n) with
j n

respect to the horizontal axis, we have

i8(i,n)
d_ = ds e

and the contribution ot the integral in equation (5) may be written:

fi+l,n

A[v(j,n) - iw(j,n)] - -2a(i,n)e "iS(i'n) _ [Zj,_f]'ldf

[i,n

ii



i+l

Si+ 1

Si. 1

Cn+ 1 C Cn n-i

)
i,n

Y

Figure 3. Cross-section Boundary Segmenting Scheme.
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After integration of the last term and summation over all contributing
segments, the result maybe written

v(j ,n)-iw(j ,n)=-2_ o(i,n)e-iO(i'n){in[R(i+l,j ,n)/R(i,j ,n)]+i6(i,j ,n)} (6)

i

in which referring to figure 4, the quantities R(i,j,n) and 6(i,j,n) are

defined by the relationships

R(i j,n)e i#(i'j'n) = _j " [i' ,n ,n

6(i,j,n) = _(i,j,n) @(i,j,n)

To insure uniqueness of the complex velocity, care must be exercised in

assigning values to the angles _(i,j,n) and _(i,j,n). Referring to figure

4, these are measured counter-clockwise from the positive y-axis so that

to a point P just to the left of i,i+l shall
when facing Pi,n Pi+l,n' j,n

• . traverses a path around
define an angle #(i,j,n) = 0(i,n) As Pj,n

P. to a point just to the right of i,i+l, %b(i,j,n) increases from 0(i,n)
l,n

to 8(i,n) + 2_. The same holds true for _(i,j,n) as Pj,n traverses a path

around

In consequence of these definitions 6(i,j,n) becomes -_ when
Pi+l ,n"

approaching i,i+l from the right and _ when approaching from the left. This

discontinuity reflects that exhibited by the stream function upon traversing

any closed path which encloses a distribution of finite sources.

From the boundary condition equation (2), we have

-(a_/@n)j,n = v(j,n)sinS(j,n)
w(j ,n)cos8 (j ,n)

After substitution of v and w from equation (6), this last expression

becomes

-(0_/0n)j,n = _ a(j,i)a(i,n) (7)

i

where

a(j,i) = 2{sin[8(j,n) - 9(i,n)] in[R(i+l,j,n)/R(i,j,n)]

+ 6(i,j,n) cos[8(j,n) - 8(i,n)]}

13



n(i,n) -_u(i,n)

_(i,j,n)

Pi+l,n

R(i+l,j,n)

6(i,j ,n)

INFLUENCED POINT

R(i,j ,n)

P°

_(i,j ,n)

Figure 4. Details of Variables Pertaining to Segment i,i+l of Boundary Cn.
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The surface normal perturbation velocity (a_/an)j, n maybe written in
terms of the body slope (av/ax)j,n, the angles of attack _, and sideslip
and the angular velocities p,q,r as

- (a_/an)j, n - (av/ax)j ,n + [_ + q(X-Xcg)/U + py/U] cosS(j,n)

+ [_ - r(X-Xcg)/U + p(Z-Zcg)/U ] sinS(j,n)

Satisfying equation 7 at each of the points P.
j,n

yields a set of equations for a(i,n).

on a given contour boundary

AXISYMMETRIC COMPONENT

Differentiation of g(x) must be carried out with due concern for the

nature of the improper integrals appearing in equation (4). The result is

2g'(Xn) z i/(4_) S"(Xn)In[0.25(l-M )] + In(Xn) - Jn(Xn)

-S'(0)/x n + S'(1)/(l-Xn) S_(0)In Xn - S"(1)In(l'Xn)}

2g'(x n) - i/(2_) 1/2 S"(Xn)in[0.25(M -I)] Jn(Xn) S"(0)In Xn}

M<I

M>I

where

I n-I

In(X n) - _ In(xn-t) S'''(t)dt =
x
n m=n

[Sm+I'' - S"m_] in(Xm-Xn)

x n-I
n

Jn(Xn) - _o ln(xn't) S'''(t)dt =

m=O

xm - (Xm+l+ Xm)/2

[S"m+l- S"m_] In(xn'Xm)

To compute the second derivatives of the equivalent body cross-sectional

area required for g'(x), the first derivatives at x are found by finite
m

differences between Xm and Xm+ I. Second derivatives S"(Xm) at Xm-(Xm+l +

Xm)/2 are then found by finite differences between S' at x andm Xm+l "

Finally S"(Xm) is determined by linear interpolation of S" (Xm) between

x and -
m Xm+l"

15



PERTURBATIONVELOCITIES

The axial velocity u dependson a_/Sx and the axisymmetric solution
g'(x), a_/Sx is obtained by differentiation of the integral in equation (3)
to first obtain an exact expression which is then approximated by evaluating
the result over the segmentedboundary.

The derivation of 8_/8x must take into account the fact that the path of

integration in equation (3) is a function of x. Referring to figure 2

increments of a dependent variable taken along C(x) are denoted by d( ) and

increments taken normal to C are denoted by 6( ). Differentiation of

equation (3) then yields
P

8_/8x - -2 R [ _ (6o/6x) in(Z-_)ds _ a(_)/(Z-_)(6_/6x)ds
e J J

+ _ _(f) In(Z-f) (6(ds)/6x)] (8)

From figure 2

6(ds) - 6_d8 - 6u ds/h([) (9)

where h([) is the radius of curvature of C(x) at _.

from figure 2

In addition, we have

6_/6X -- 6v/6X e i(8 - 0.5_) (io)

To evaluate 6G/6x we note,

6o/6x - lim [a(i,n+l) a(i,n)]/6x (Ii)

6x_o

Introducing equations (9), (i0), and (ii) into equation (8),

a_/ax--2 Re{ _[(6a/6x)o + a/h 6v/6x I In(Z-_)ds + i _[o(6_,/6x) I df/(Z-_)}

Again, assuming that quantities in the brackets of the integrands are

constant over i,i+l,

(a_/ax)j, n - 2 > {[(6a/6X)o + o/h(6w/6x)]i, n

i

A_(i,j,n)/a(i,n)

a(i,n) (6u/6x)i,n 6(i,j,n)}

where

&_(i,j,n)/a(i,n) = { R(i+l,j,n).](i,n) in R(i+l,j,n)

R(i,j,n).](i,n) in R(i,j,n)

6(i,j,n) + 2(i,n)R(i,j ,n)-_(i,n)
)

The radius of curvature h(i,n) and the derivatives 6G/6x, 6u/6x are

approximated at the mid-points of the segments i,i+l as follows
16



6a/6x - the derivative at the mid-point x of the interval
n

Xn 'Xn+l is set equal to the divided difference between

a(i,n) and a(i,n+l). Linear interpolation between these

derivatives then yields 6a/6x at x .
n

6v/6x - referring to figure 5, the displacement 67 is determined

by linear interpolation between 6fi,n and 6fi+l,n.

6_/(Xn+l-Xn) then represents 6w/6x at Xn" Linear

interpolation between the stations x' then yields 6w/6x
n

at x .
n

i/h - O at P. is determined by interpolation between values
l,n

• The curvature I/h at Pi,n is then setof 8(i,n) at Pi,n

equal to the divided difference between @ at Pi+l,n and e

at P.
l,n.

The lateral and vertical perturbation velocities, v and w , are obtained

from

v - iw = - 2 _ a(_)/(Z-[) ds

Integration over the boundary with constant segment source density yields:

v(j,n) - iw (j,n) - 2_ a(i,n)eiS(i'n){In[R(i+l,j,n)/R(i,j,n)] - i6(i,j,n)}

i

Thus

v = @y = 2 > o(i,n){In[R(i+l,j,n)/R(i,j,n)]cos 8(i,n)

i

6(i,j,n) sin 8(i,n)}

w- 4z- 2 > a(i,n){In[R(i+l,j,n)/R(i,j,n)]sin e(i,n)- 6(i,j ,n) cos 0(i,n)}

i

17



P°

l,n

Pi+l. n

6_i+i, n

_(i,n)

-I
6Ui, n

Pi+l,

C C
n n+l

i%

Figure 5. Interpolation Procedure for Determination of (6w/6x)i,n.
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SURFACE SOLUTION

CHORD PLANE SOURCE AND VORTEX PANELS

The wing, canard, vertical and horizontal tail are simulated by a

system of swept tapered chord plane source and vortex panels with two edges

parallel to the free stream. The coordinates of the panel corners are

specified with respect to an (x,y,z) system having its x-axis in the free

stream direction and its z-axis in the lift direction. The panel influence

equations are written in terms of a coordinate system having a z-axis normal

to the panel and an x-axis along one of the two parallel edges. A

coordinate transformation is necessary to obtain the coordinates in the

panel reference system. If the plane of the panel is inclined at an angle

with respect to the y,z plane a transformation into the panel coordinatep

system (Xp,yp,Zp) is accomplished as shown in figure 6.

X m X

P

X

Z

p z

= +z sin 8
yp y cos 0p P

z - - y sin 8 + z cos 8
P P P

Y

Yp

influencing

panel

jep 
Y

W
C

control

point

panel

U = U

c p

v = v cos (0c + w sin (0p-c p - 8p) P 0c)

Wc = -Vp sin (8c- 8p) + Wp cos (gp- 8c)

Figure 6. Coordinate Transformation in Panel Reference System.
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A transformation of the (Up,Vp,Wp)velocities into the coordinate system of
the panel on which the control point is located (Uc,Vc,Wc) results in the
axial, binormal and normal velocities induced on the panel.

For the image of the influencing panel, the signs of Yc' 8c
changedwhile using the samecalculation procedure.

and v are
C

QUADRILATERAL SOURCE AND DOUBLET PANELS (PANELED BODIES)

For subsonic Mach numbers the body may be represented by a system of

planar quadrilateral constant source and constant doublet panels. Since

four points arbitrarly selected on a surface may not lie in the same plane,

a mean surface through the four points is selected to represent the panel.

Let (xi,Yi,Zi) represent the four points on the body surface,

and (_i,Ni,_i)

(xl,y:,z,)

represent the four points on the mean surface.

(x2,Y2,Z2)

"i
(_

This mean surface is chosen in the following manner.

i. The direction of the panel normal is found by taking the cross product

of the vectors representing the diagonals.

d31 × d42 31 ( xs-xl , Ys'Yl , zs'zl )

( x4-x2 , Y4-Y2 , z4"z2 )
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2. The out of plane distance, 6, is calculated using vectors determined by

pairs of points.

- 4 ( 712+ s34) • n

S12

S34 =

( Xl-X2 , YI"Y2 , Zl'Z2 )

( x3-x4 , Y3"Y4 , z3"z4 )

3. The coordinates of the mean surface are calculated by adding or
-+

subracting 6 n from each of the corner points, i.e.

( _1' _I' _1)

( f2, _2, _2)

( fz, _3, _3)

( f4, _4, _4)

- ( xz, Yl, zl) - 6 ( nl, n2, n3)

- ( x2, Y2, z2) + 6 ( nz, n2, n3)

- ( x3, Y3, z3) - 6 ( nl, n2, n3)

= ( X4' Y4' Z4) + 6 ( nl, n2, n3)

The normal computed for these four points is the same as the normal for the

original body points, since the diagonal vectors are the same. If a vector

determined by the line segment joining any two of the four points is normal

to _, then the four points must lie in the same plane. This is easily shown

to be true. From the above definitions,

_+ -+0 - ( 12+ a34) * n

a12 = ( f_-f2 , _i'_2 , _1"_2 )

( fs'f4 , n3-n4 , _3-_4 )

but

_34 = ( f3"_4 ' _3-_4 ' _3"_4 )

[ (_3"_I)

' (VS-V_)

' (_3"_I) (_4"_2) + (_-_=) ]
-+

or

( a12+ a34) • n - 2 a12. n = 0

similarly a12" = 2a" = 34" n

and all four points must lie in the same plane.

71 0
= G41e
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BOUNDARY CONDITIONS

Vortex Panels

At the vortex panel control points the resultant velocity along the normal

at a panel control point must be zero. Using a local coordinate system,

with perturbation velocities (Uc,Vc,W c) at the control points,

-_ -+ -+

U = U ( e +r* e
oo X Z

Y

) - cose
n z n c

e - - e sin 0
y n c

+ eb sin 8c

-+

+ e b cos 0 c

U._=U [ e
X

+ u e + (Vc+ _ sin 8c) _b + (Wc+ _ cos 0c) _ ].5c x n

= U [ (l+uc)ex.n + (Wc+ _ cos 8c) ] = 0

with n - [e - (dZc/dX) i x ]n

For small perturbations (l+Uc)_x._ = - (dZc/dX)i and _'_n = I

Therefore Wc i (dZc/dX)i _ cos ec

Body Panels

The boundary condition on body panels will involve the normal component of

velocity. If we set the normal component equal to zero, we have the usual

flow tangency boundary condition. Nonzero normal components can be used for

jets or inlets• Given the boundary condition on the surface and the field

at infinity, the solution for the external flow is unique. It can be

satisfied by an infinite number of combinations of source and doublet
distributions on the surface. However each combination will result in a

different field inside the body surface• Specifying an internal boundary

condition will make the source and doublet distribution unique, and can have

a powerful effect on the numerical behavior of a solution involving a finite

number of elements. The internal boundary condition which we have chosen,

with these numerical considerations in mind, has zero perturbation potential

on the internal boundary, and therefore due to the nature of the governing

equation, zero perturbation potential inside. Below, we will show that by

first correctly choosing the surface source distribution, we can also

satisfy the external normal velocity boundary condition by satisfying the

internal surface boundary condition on 4.

Consider a closed region determined by the surface S. Let the

surface have a distribution of sources and doublets with local strength o

and _. The surface, S, will divide the interior and exterior regions.
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_e _terior e

U rior i

a, # on S

Define e - the subscript denoting properties exterior to S

i - the subscript denoting properties interior to S

-+

n - the external normal to S = ( n , n n )
e x y, z

u V _ = perturbation velocities due to a and _.

• _ - U
e n

e

the prescribed normal velocity on S (exterior)

We can set the value of the surface source strengths to any value and still

satisfy the external boundary condition.

^ o

We will set, a = U • _ + U =

_ e n [22 2 211/2e _ n + n + n
x y z

and adjust the value of _, and any other singulartity strengths, such that

everywhere on the interior surface of S,

4i= 0

Then in the entire region interior to S,

_i = 0

-+

and u.1 = V _i = 0

U = V4 + = U
i i =

Since the _ gives a continuous normal velocity across S, using Appendix C,

or

^

u. n + u.. n. = u • n = a - - U • n + U
e e i 1 e e _ e n

e

-> -+ -+

(U + u ) • n = U
e e n

e

as required on S.

Therefore the normal velocity boundary condition can be satisfied by

substituting a boundary condition for 4 on the internal boundary surface.
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PANEL INFLUENCE COEFFICIENTS

Each of the panel types induces a perturbation potential everywhere in

space. If panel j has unit strength, we can say it will induce the

following velocities and velocity potential at the control point of panel i.

u v w A4
(Aij, Aij, Aij, ij )

u v w D4
(Dij, Dij, Dij, ij )

u v w S4
(Sij, Sij, Sij, ij)

u v w T4
(Tij' rij' rij' ij )

for vortex panels

for body doublet panels

for body source panels

for thickness source panels

Therefore, assuming there are ntv vortex panels and ntb body panels, and

Cpj #j aj rj are the panel singularity strengths the following set of

panel influence coefficients can be written:

ntv ntb ntb ntv

T- u u ?-u. = A.. C + D.. _j + a. + r. + u 0
z z3 Pj lJ 3 ]

j -i j =i j :I j =I

ntv ntb ntb ntv

h iv
v i = AVj Cpj + Dij #j + S_j o.3 + ri] r.j + v°i

j -i j =i j :I j-i

ntv ntb ntb ntv

Lww. = Dij z3 3 Tij Pz Aij Cpj + _j + sW.. a. + r + w o
j=I j=I j=I j=I

ntv ntb ntb ntv

13 _p + lj a + T + 4op ij p

j=I j=I j=i j=I

where (u 0 , vo , wo , 4o ) refer to the perturbations induced by any other
i i i i

body or source singularities, e.g. slender bodies.
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PANEL SINGULARITY STRENGTHS

Source (Thickness) Panels

The source singularity strengths for thickness panels may be found

directly by equating each source panel strength to the slope of the

thickness distribution at its control point. For panel i

¢i = (dZt/dx)i

where Z t refers to the shape of the thickness distribution.

Body Source Panels

The source singularity strengths for body source panels are set to give

the correct normal velocity boundary condition when the internal

perturbation potential is zero. For panel i we set

A

a. = - U • n.
1 =o i

(_°

1
+ U =

[22 2 211/2
ni fl n + n + n

x° Yi zi"t

,4

where n i = ( nxi n , n z ) is the outward normal of panel i and U° P n°
Yi i i

the normal velocity boundary condition for panel i.

is

Vortex and Body Doublet Panels

The determination of the vortex and doublet panel singularity strengths

is the final step in the solution procedure. They are obtained by solving a

set of simultaneous equations utilizing the panel influence equations to

relate the singularity strengths to the boundary conditions at control

points on the surface. For vortex panels the equation to be satisfied is,

ntv ntb

W _ W
Aij Cpj + Dij _p

j-i j-i

w w w 0 + (dZc/dX) i
I i i

and for body panels on the internal boundary it is,

ntv ntb

13 _p _a ¢_ _o
j_l j-1 i i i

The known perturbations from others singularities have been placed on the

right hand side. Corresponding sets of equations may be written for

symmetrical or antisymmetrical loading.
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UNIT SOLUTIONBOUNDARYCONDITIONS

Several types of basic and unit boundary conditions are considered and
can be classified as either symmetric or antisymmetric. Linearized theory
allows the superposition of these basic unit solutions. The p, q and r
rotary derivative boundary conditions are the result of placing the
configuration at _ = 0, _ - 0 in a flow field rotating at one radian per
second.

Symmetric:

la) Basic - vortex panels (dZc/dX) - wo wo - wo
B r a

(dZc/dX) - surface slope due to twist and camber

w o - normalwash induced by slender

B body thickness and camber

w o = normalwash induced by thickness

r source panels

w o - normalwash induced by body

a source panels

-- (U. _) +U =- ( e. n) + U -- n + U
n x n x n

Ib) Basic body panels (internal boundary) 4o - 4o

4o = velocity potential induced by thickness

source panels

4o = velocity potential induced by body

a source panels

26



2a) Unit alpha - vortex panels

8
C

-- - W - W

180 cos 0c _B aa

- dihedral angle

w - normalwash induced by slender body

_B at unit alpha

w _ normalwash induced by body

a source panels at unit alpha

=- (U" n) -- (e. n) -180 z 180 n Z

2b) Unit alpha - body panels
a

4_ s velocity potential induced by
a body at unit alpha

3a) Unit q rotation - vortex panels
2

(X-Xcg) cos 8c - wqB - Wqa6

w = normalwash induced by slender body

qB undergoing unit q rotation

w = normalwash induced by body panels

qa undergoing unit q rotation

a - - ( U • _ ) - _ 2 [ (X_Xcg) n (Z-Zcg) nx ]
c z

3b) Unit q rotation - body panels

¢qa

_qa

= velocity potential induced by body

panels undergoing unit q rotation

4a) Unit flap - vortex panel " 180 _

4b) Unit flap - body panel

z i. for flap panel

= 0. for others

0 a = 0
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Antisymmetric:

la) Unit beta vortex panels

e
C

18--Osin 8 - w w
c _B _o

= dihedral angle

= normalwash induced by slender bodyw.
_B at unit sideslip

w - normalwash induced by body
_a source panels at unit sideslip

180 ( _ " _ ) = - --ny 180 y

ib) Unit beta - body panels

= velocity potential induced by

body

2a) Unit p rotation - vortex panels

" b (y-Ycg) cos 0c + (z-z sin 8c - wpB - Wpa

w = normalwash induced by slender body

PB undergoing unit p rotation

w = normalwash induced by body panels

Pa undergoing unit p rotation

oo

2

--_- [ (y-Ycg)n z (Z-Zcg) ny ]

2b) Unit p rotation - body panels
_Pa

- velocity potential induced by body

panels undergoing unit q rotation
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3a) Unit r rotation - vortex panels
2

(x-Xcg) - w - wb sin 0 e rB ra

w _ normalwash induced by slender body

rB undergoing unit r rotation

w - normalwash induced by body panels
r
a undergoing unit r rotation

a-- (U. n) -
oo 2 n (y-Ycg) nx ]b [ (X-Xcg) y

3b) Unit r rotation - body panels
_r

a

_r - velocity potential induced by body
a panels undergoing unit r rotation

4a) Unit flap vortex panel 180

= i. for flap panel

= O. for others

4b) Unit flap body panel 0 a - 0
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CONSTANT SOURCE AND CONSTANT VORTICITY PANEL INFLUENCE EQUATIONS

The source finite elements have a discontinuity in normal velocity

across the panel surface while the vortex finite elements have a

discontinuity in the tangential velocity in a direction normal to the panel

leading edge. The magnitude of the discontinuity, in each case, is constant

over the panel area. In addition the vortex panels have a system of

trailing vorticies extending undeflected to downstream infinity.

A constant pressure or constant source panel with a quadrilateral shape

can be constructed (figure 7) by adding or subtracting four semi-infinite
4

triangular shaped panels. These semi-lnfinite triangles, each determined

by a corner of the quadrilateral, can be assumed to induce a velocity

perturbation everywhere in the flow. However, each corner represents only

an integration limit, and all four corners must be included to make any

sense. These perturbation potential expressions are derived in Appendix A.

• (x,y,z) = _(x-xl, Y'Yl, z,T21) - _(x'x2, Y-Y2, z,T21)

" _(x'x3, Y-Ys, z,T43) + _(x-x4, Y'Y4, z,T43)

x

(x3,y3,0)

X2- X 1

T21 = Y_" Yl

" " - l) = 0

_Y (x2,y2,0)

T43

X 4 - X 3

Y4" Y3

_
+

\

Figure 7. Constant Pressure or Constant Source Panel Construction.
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For one corner, having sides determined by y - 0 and x-Ty - 0:
2

r y + z R- x + _ r k- _ I , /_ - I-M , B = T + _m , , 2< co2 _ 0

constant source panel

2

ak _ I R+x i : BR+(Tx+_ y)

_s(X,y,z,T ) - - -- _ y _ log -- + (x-Ty) - _ log 2
4_ R-x B BR-(Tx+_ y)

+

ok i i

u (x y,z,T) .... _ log
s ' 4_ B

_i zR }z tan 2

xy-Tr
2

BR+(Tx+_ y)

2

BR- (Tx+_ y)

ak ( i R+x

v (x,y,z,T) = - -- _ _ log _
s 4_ R-x

2

I , BR+(Tx+_ y)

T - _ log 2

B BR-(TE+_ y)

ak i zR

w (x,y,z,T) - -- tan 2
s 4_ xy-Tr

constant vorticity panel

kCp { i4v(X,y,z,T) = Tz _ log
8_

zR
_I

+ (x-Ty) tan 2
xy-Tr

2

R+x 2 1 z BR+(Tx+_ y)

z B - _ log 2
R-x B BR- (Tx+_ y)

i 2 i Y l

(2-k) [ Tz _ log r + (x°Ty) tan - ]
z

kCp ( _i zR

u (x,y,z,T) = _ tan 2
v 8_ xy-Tr

ly}(2-k) tan -

z

kCp ( _i zR

v (x,y,z,T) = - -- _ T tan 2
v 8_ xy-Tr

kCp r i R+x

w (x,y,z,T) = -- _ T F log -- -
v 8_ R-x

zR _i Y zx

+--f (2-k) [ T tan - - -_ ]

r z r

2

2 1 i BR+(Tx+_ y) yR

B - _ log 2 + --2
B BR-(Tx+_ y) r

i 2 yx ]

(2-k) [ T _ log r - -_
r

Only the real (not imaginary), do--stream, contributions are considered when

M >1
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CONSTANT SOURCE AND CONSTANT DOUBLET PANEL INFLUENCE EQUATIONS

Source and vortex panels used to represent body shapes may have an

arbitrary quadrilateral shape, i.e. they need not have two streamwise edges.

The influence equations may be written in the z = 0 plane, and a coordinate

transformation used to obtain the perturbations of a panel having arbitrary

orientation (see Appendix C). A quadrilateral source panel of arbitrary

shape can be constructed by combining quadrilaterals with streamwise

parallel sides.

(xl,yl,0)

T41 = TI4

X 3 - X 4

Y3 - Y4

(x2,y2,0)

X 3 - X 2

Ys" Y=

(xs,ys,0)

I\

#(x,y,z) =

+

+

_s(X'Xl , Y'Yl, z,T21)

_s(X-X2, y-y_, z,T3e)

Cs(X-X4, Y-Y4, z,T34)

_s(X-X4, Y'Y4, z,T41)

- _s(X-X2, y-y_, z,T2 I)

_s(X-Xs, Y'Ys, z,Ts2)

+ _s(X'Xs, Y-Ys, z,Ts4)

_s(X'Xl, Y-Yl, z,T41)

= _s(X'Xl, Y-Yl, z,T21)

+ _s(X-X_, y-y_, z,Ts2)

+ _s(X-Xs, Y-Ys, z,T4s)

+ _s(X'X4, Y'Y4, z,T14)

_s(X'Xl, Y'Yl, z,T41)

_s(X'X2, Y-Y2, z,T12)

_s(X'Xs, Y'Ys, z,T2s)

_s(X-X4, Y'Y4, z,Ts4)

Therefore each corner consists of the difference between the perturbations

induced by the two sweep angles. Therefore we can omit terms independent of

T, since they will cancel when the two contributions are combined.
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Therefore, ommiting terms independent of T, the perturbation velocities and
perturbation potential for an arbitrary quadrilateral constant source panel
are:

Constant source panel

2

ok{ I 1 BR+(Tx+fly ) _1 zR }_s(X,y,z,T) - -- (x-Ty) - _ log 2 + z tan 2
4= B BR- (Tx+fl y) xy-Tr

2

ok I z BR+(Tx+fl y)

Us(X,y,z,T) - -- - _ log 2
4_ B BR-(Tx+fl y)

2

ak T z BR+(Tx+fl y)

v (x,y,z T) - -- - _ log
S ' 2

4_ B BR-(Tx+fl y)

ak _1 zR
w (x,y,z T) = - -- tan
S P 2

4_ xy-Tr

A constant doublet panel is obtained by taking the z derivative of the

constant source panel.

#k _1 zR

_d(x,y,z,T) - - -- tan 2
4= xy-Tr

2

#k i z (Tx+fl y)

Ud(x'Y'z,T) - -- - 2 2 2
4_ R [(x-Ty) + B z ]

2

_k i Tz (Tx+fl y)

Vd(X,Y,z,T) - -- - 2 _ 2
4= R [(x-Ty) + B z ]

2

#k i (x-Ty) (Tx+fl y)

Wd(X'Y'z'T) = - 2 2 2
4_ R [(x-Ty) + B z ]
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Since the sweep angle could become infinite, we can write the above
equations in a different form. First, the sweepangle can be written as

^2 2 2 2
T - then define B - AX + _ AY

AY '

where e.g. for T - T12 AX - x 2 - x I AY - y_ Yl

Now for the source panel, using the previous definitions, we can write,

^ 2

ok f 1 I BR + ( x AX + _ y AY )

_s(X'Y'z'T) _ -- t ( x AY - y AX ) _ _ log ^ 2
4_ B BR - ( x AX + _ y AY )

ak AY

u - --(x,v,z,T) = - ^

S
4w B

ak AX

v (x,y,z,T) - ^
s 4_ B

_i AY zR
z tan

xy AY - r AX

^ 2

I BR + ( x AX + _ y AY )

log ^ 2

BR - ( x AX + _ y AY )

^ 2

I BR + ( x AX + _ y AY )

log ^

BR o ( x AX + _ y AY )

ak _I AY zR

w (x,y,z,T) - -- tan 2

s 4_ xy AY - r AX

The constant doublet panel is now.

_k _i AY zR

_d(x,y,z,T) _ -- tan 2
4_ xy AY - r AX

#k i

Ud(X,y,z,T)__ = -- _
4_ R

#k I

Vd(X,y,z,T ) ....
4_ R

_k

Wd(X,y,z,T)__ = _ --
4_

2

z AY ( x AX + fly AY )

[ (xAY

2 ^2 2 2

yAX) +Bz AY ]

2

z AX ( x AX + _ y AY )

[ ( x AY - y AX )

2 ^2 2 2

+Bz Z_Y ]

I ( xAY

2

y AX ) ( x AX + _ y AY )

R [ ( x AY - y AX )
2 ^2 2 2

+B z AY ]
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LINEARLYVARYINGSOURCEPANELINFLUENCEEQUATIONS

In supersonic flow constant source panels having a sonic edge have a
real singularity along an extension of this edge. The singularity occurs
because:

2

lim I { I _R1+[T(x-xl)+_ (Y'Yl)]
(x-x I) T(y-y I) 0 e _ log 2eR1-[r(x-xl)+_ (Y'Yl)]

2 2 2

E = (T+_) _0

2

I _R_+[T(x-x2)+_ (Y-Y2)]

log 2

_R2"[T(x'x2)+_ (Y'Y2)]

oo

X

Y

)-T(y-yl) _ (x-x2)-T(y-y2)

(x2.Y2) _ _-_

z 0

Control points which are near the extension of this edge will have large u

and v velocities induced upon them. The singularity can be eliminated by

using panels which have a source distribution which varies linearly in the

chordwise direction. The resulting continuous source distribution

eliminates the singularities. The linearly varying source panel influence

equations can be found by integrating the constant source panel influence

with respect to x.

2

-k { 1 R+x 1 I BR+(Tx+_ y) i zR }u10 = -- y _ log -- + (x-Ty) - _ log 2 + z tan 2

2_ R-x B BR-(Tx+_ y) xy-Tr

2

ok ( I R+x 1 I BR+(Tx+_ y)

v10 - _ (x-Ty) _ log -- T(x-Ty) - _ log 2
2_ Rox B BR-(Tx+_ y)

zR
_I

Tz tan 2

xy-Tr

-k { i R+x _ 1 I BR+(Tx+, y) _I zR }w10 - Tz _ log -- B z - F log 2 + (x-Ty) tan 2

2_ R-x B BR-(Tx+_ y) xyoTr

2

-k{ 1 R+x 2 1 1 BR+(Tx+, y) _I zR }_i0 = -- Tz F log -- B z - _ log (x-Ty) tan 2

2_ R-x B xy-Tr
2

BR- (Tx+B y)
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These velocity components satisfy the same criteria as the velocity

components for the constant source panels except that the source strength is

proportional to (x-Ty). The source panel finite elements are constructed

with the following properties.

I. All panel leading and trailing edges are at constant (x/c), side

edges are at constant y.

2. Each source finite element is composed of a pair of chordwise

adjacent panels.

. The source strength varies linearly with chord measured from the

leading edge of a panel pair, i.e. the maximum value of the source

strength is proportional to the local chord and attains this

maximum on the panel edge joining the panel pair.

X

Y
1

\
\
\
\

s \ \
\ \
\ \
\ \
\
\
\
\

a

5

= (x/c) (x/c) = (x/c) (x/c)
31 3 I 4

= (x/c) (x/c) - (x/c) (x/c)
53 5 3 6

The perturbation velocities induced by this panel pair are composed of

contributions from six corners.

u(x,y,z) - a/As1[ulo(x-xl, Y-Yl, z, T I) - Ul0(X-X s, Y'Ys, z, Ts)

-Ul0(X-X_, y-y_, z, T=) - u10(x-x4, Y'Y4, z, T4) ]

+ °/Ass[u10(x'xs, Y'Ys, z, T5) u10(x'x3, Y'Ys, z, Ts)

-u10(x'xe, Y-Ye, z, Ts) - Ulo(X-X 4, Y-Y4, z, T4)]

If there are N panels in the chordwise direction there will be N-I

singularities or unknown source strengths associated with them. The linear

variation in the source distribution means the value of dz/dx must be zero

at the leading and trailing edges of each span station. This may be an

undesired restriction and therefore the use of linearly varying source

panels is optional.
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EDGE EFFECTS

The low pressure created by high velocities around a surface subsonic

leading edge results in a suction force. As the edge becomes thinner or the

angle of attack increases, the flow deviates from potential conditions

resulting in a progressive loss of theoretical suction and an increase in
&

drag. Generalizing a concept due to Polhamus , it is assumed that the

leading edge vortex created by the detached flow in effect rotates the lost

suction force perpendicular to the local surface.

In order to implement this philosophy, a method of determining the

spanwise variation of potential suction was developed using linear thin wing

theory and involves finding the coefficient of the I/Jx term in the

chordwise net pressure distribution. The analysis is applicable to multiple

surface problems of arbitrary planform in the presence of bodies at any Mach

number. If the chordwise net pressure distribution on a thin wing at any

given span station is expanded in a series

N

ACp = Ao cot(C)+ > A sin(n_)n

n=l

f = x/c = I 2 ¢2 (1-cos _) _ sin ( )

(12)

it is shown in appendix B that the leading edge nondimensionalized suction

force per unit length is

2

A0
C (y) - ATHRUST - --_ (13)
s c by q_ 8 2 2

JT+_

2 2

where T - tan AL. E • _ - I-M' CO

and c is the local chord.

Only the first term in equation 12 contributes to the thrust, since it

is the only one which is infinite at the leading edge. If the chordwise

pressures are known at M points along the chord, the coefficients A are
, n

obtained by fitting a least square error curve described by N terms of the

series, through the points, where N < M. The pressure distribution is

obtained using constant pressure panel analysis.
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The method used to compute the suction force at surface tips is similar

to that for the leading edge. By using the irrotational property of the

flow, it is shown in appendix B that the tip suction force is

Cs(f) = AF /(q CTAX ) -(_/32)[CAvG/(CT_MAX)]Cn0 [f f(x)dx] (14)0

where

CAVG

c T

_MAX

_,x

c
n o

surface average chord

tip chord

tip surface lateral surface dimension

faction of chord

2 _ -1/2
Cn(_)[c(_)/CAVG]NMAX [ (_MAX N2)/2]

c
n

is local section normal force coefficient

and as N _ _MAX the net pressure coefficient is assumed to be of the form

}1/2ACp(f,N) = [I-(N/NMAX)2]/2 (CAvG/C(N)) f([)Cn 0

The sectional leading edge suction attained in the real flow, C (y), is
s

6

estimated by

Cs(Y) = Ks(Y) Cs(Y)

where

Ks(Y ) - 2 MeI(I-M_) [(tn/Cn) (rn/Cn)0"4/(#nCs,n) ]

0.6
_<i

38



and

Me - - /_ _-Ip [(i+_p2)I/2 111/2

P z 7 _n Cp,LIM ' _n = (I-M_)1/2

2

Cp,LIM--2/(TM2n )[(Rnx 106)/(RnX 10"6+ 10(4"3Mn ) )]

R - R (Cn/C) cos(ALE )
n c

2

C m C (C/Cn)/COS (ALE)
s,n s

Mn = M_ cos(ALE)__

2

(.05+.35(I-M n) )

The chord of the normal section c is defined so as to place the
' n'

maximum thickness, tn, at the mid-chord as indicated in figure 8. The

associated leading edge radius is designated by r
n

Leading

Edge

Maximum

M Thickness

Cn/2

t
n

Figure 8. Definition of Normal Section Characteristics.

Potential tip suction is assumed to be fully rotated as a result of

vortex formation in the present analysis.

39



JET FLAP

A completely linearized approach is used based on the assumptions of

thin airfoil theory. The flow is assumed to be inviscid and irrotational

and all entrainment effects are neglected. The jet is represented by an

infinitesimally thin sheet having zero mass flow but finite momentum per

unit of span. This sheet is assumed to extend from the trailing edge of the

surface back to infinity. (In practice one or two chord lengths is

sufficient). The effects of transverse momentum and the deflection of the

jet sheet are neglected.

Since both the planform and jet can maintain a pressure discontinuity,

they are both represented by a system of quadrilateral panels having

continuous distributions of vorticity. The strengths of these constant

pressure vortex panels are determined by solving a set of linear

simultaneous equations which satisfy the downwash boundary conditions at a

set of control points on the planform and jet.

The boundary condition on the planform is the previously described flow

tangency condition. The pressure difference across the jet causes a change

in the direction of the jet momentum. The equation relating these

quantities forms the boundary condition on the jet and can be derived by

considering a jet segment of unit depth.

/

i I Ii

p
I

P+AP

The mass rate of flow through the jet is m and the velocity is V. If we

assume a pressure difference of AP across the jet, then from the momentum

theorem applied to the differential element, we write

or

where R is the radius of curvature of the jet.
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The reaction of the jet on the flow external to the jet is

F - RAP A_

A vortex of strength 7 per unit length along the jet would produce a
reaction of

F - p U7 R A_

Hence, equating these two forces, we calculate the action of the jet on the

flow external to the jet by replacing the jet with a running vortex strength

given by

- mVj/(pU R)

For a nearly horizontal jet with a large radius of curvature

2 2

I/R = dz/dx = dw/dx

where w is local downwash velocity (nondimensionalized with respect to U ).

Then

_2_1 _z_ I = &v. I

2 AC - - qC pU dxp U 2 pU C ----/- ___z dw

or
a

c (y) C(y) _x w(x y) ACp(x,y) = 0#

which is the boundary condition written for a three dimensional jet flap.

To apply the jet flap boundary condition to control point i, the above

equation is integrated between adjacent control points in the streamwise
direction.

X X
C. C.
1 i

I ° IC (y) C(y) -_-x w(x,y) dx - ACp(x,y) dx = 0 (15)#

X X
C.
i-1 ci-1

The control point is located at 87.5 percent of each panel chord. To

simplify the second integral in equation (15), the assumption is made that

the control point is exactly at the panel trailing edge. The effects of

such an assumption have been shown to be negligible. Equation (15)

evaluated from the leading to the trailing edge of panel i yields the

following relation:

C_C [w i - Wi.l] - ACp.aXi = 0 (16)
1
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The downwash at each control point is written in terms of the N net

pressures on the quadrilateral panels:

N

w. _ L A.. ACpi zj .

j-1 J

N

\
wi-I - ___ Ai-lj ACp.

j-1 J

Equation (16) is then written

N

> {C C[Aij Ai_lj ] 6ijAxi} AC P - 0

j-I J

where 6.. is the Kroneker delta.
13

For a flap panel adjacent to the jet exit, equation (16) must include

any jet deflection angle relative to the surface trailing edge.

C C - + 6j)] ACp Ax. m 0[wi (wi-i i I

or

C C [w. - W._l ] - ACp.AX i = C C6.i I # 3
i

where 6. is the jet deflection angle.
3

Then

N

{C#C [Aij

j-I

Ai_lj] _ijAxi} ACp - C C6.
j _ J
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The complete set of linear simultaneous equations for both the surface
and the jet flap is then written

N

Eij Acp -

j-i J
C i , i - I,N (17)

where

ao •_

13 Aij for i on the surface 1

C C[Aij-Ai_Ij] - 6ijAx i for i on the jet

1

C i - C C6 i

0

for i on the surface ]

for i on the jet adjacent to the exit

for i elsewhere on the jet

Both symmetric and antisymmetric jet deflections are considered.

Thus,after calculating the influence matrices and boundary conditions in the

usual manner, the appropriate rows are modified and combined to produce a

linear symmetric or antisymmetric system as described by equation (17).

Because of the rotational quality of the flow fields, the p, q and r rotary

derivative calculations are generally not valid for jet flap configurations.

INLETS

A jet boundary between two flows with different total energies is

characterized by a discontinuity in tangential velocity, but a continuous

value of Cp. This flow can be replaced by a flow with the same total

energy everywhere, but now having a discontinuity in Cp across the jet

boundary, instead of a discontinuity in total energy. The jet boundary will

be represented by a vortex sheet having the same discontinuity in tangential

velocity, and the velocities will be the same everywhere in the two flows.

If the jet is such that the perturbation velocities are small compared with

the free stream velocity, i.e. u,v,w << U , this jet boundary can be

simulated by constant &Cp chord plane panels. It will be shown that, to

first order, this value of ACp is constant on the entire jet boundary. Let

u be the x component of the perturbation velocity. Then, assuming energy

addition to the jet flow, write the energy equation across the jet boundary:
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[(l+u)2 +v2
P_

2

+w]
AH

+ 1 2

_pU

2 2 2

ii [(l+uj) + + wj]
- P_ vj

_-.u J I l / ll/////ltLl_

inside pj , Uj - Uoo(l+u j)

outside p , U - U (l+u)

To first order, _ -
P_

therefore

2

I Mu
oo

2 2 2 2

[ 1 Mu ] [(l+u) +v +w ]
co

AH 2 2

+ z 2 = [ i M u_j] [(l+uj)
_pU

2 2

+V. + W.]
J 3

to first order the energy equation becomes,

2 AH 2

[ i + (2-M)u ] + 1 2 = [ i + (2-M)uj]
_pU

2 AH *

therefore (I-M)(uj- u) = 1 2 = _ ACp
_pU

or ACp = 2 (uj- u) =

2 AH
2 1 2

(2-M) _pU

= const

where ACp is in the direction of the normal pointing into the jet flow

The inlet is simulated by specifying an average mass flux over a set of

field points within the inlet region. The nondimensional mass flux per unit
area in the x direction can be written:

p_U 2 2
- (I M u) (I + u) - [ I + (I-M)u ]

p U

The value of this expression can be calculated, on each field point, for a

unit value of ACp across each panel of the configuration and jet boundary.

Therefore a linear equation can be written to constrain the value of the

average of the mass flux, and therefore the inlet mass flux, on a given set

of field points. The additional unknown required for the additional

equation is supplied by the (constant) value of ACp across the jet boundary.
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AERODYNAMICCHARACTERISTICS

Longitudinal and lateral-directional forces and moments due to
thickness, twist and camber, pitch, sideslip, and the dimensionless rotary

A A A

velocities p, q, and r are obtained from surface pressure integrations of

the various configuration components.

Slender Bodies

The pressure coefficient, to an approximation consistent with slender

body theory, is

(P-P=°) { [ ^ (X'XcG) ^ Y ]C = - 2 _x + g'(x) + _ + q +P q_ c/2 P b-_ 4z

[ ^ (X-XcG) ^ (Z-ZcG) ] } 2 2- r b/2 + P b/2 _y _y " _z (18)

Paneled Bodies

For paneled bodies a surface differentiation of the perturbation

potential is used to obtain the perturbation velocity components tangential

to the surface. The velocity normal to the surface is obtained from the

imposed boundary condition. A formula for the pressure coefficient can be

derived using the energy equation. Although the perturbation velocities

were obtained using a linear equation, on body surfaces, which may be quite

thick, a better approximation to the pressure coefficient is obtained using

a nonlinear formula. Assuming the freestream is at an angle of attack a and

an angle of sideslip _, and the perturbation velocities are nondimensional,

we can write for the freestream,

U = U cos _ cos _ cos _ sin _ e + sin _ e
x y z

For the energy equation we can write,

vR T + I U s [ =
7-1 --_- =o L ( u + cos ¢, cos _ ) + ( v - cos ,_ sin _ )

+ i 2( w + sin _ ) = --7--_R T + U
7-1 _ 2

2

and since M
oo

2

U
co

7RT

i + v-i H2 [ 2
2 _ L I ( u + cos _ cos _ ) ( v - cos _ sin _ )

_ ] T(w+ sin_) - T
cO
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1 __7_LLIM 2 ( u cos _ cos _ v cos c* sin _ + w sin _ )
2

2 2 2 1

+ u + v + w ]

Since the existence of a velocity potential assumes isentropic flow, we can

use the isentropic relationship between pressure and temperature.

Ix] 2_2__ - T 7-1 - I _ M 2 ( u cos _ cos
p_ 2

2 2 2

v cos _ sin _ + w sin _ ) + u + v + w

for small values of _, and _ this becomes

/-

"-P-- - J 1 - _r"l M2

P=o [ 2 oo
2 2 2 1

2 ( U - _ V + _ W ) + U + V + W

or

M2 [ 2 2 2
-P-- - i _ _-1 2 u+ u + ( v - B )
p_ 2

2 2

+ ( w + _ ) =

Using the above expression the isentropic pressure formula for c
P

P P_ - i I 2 [ -2--
_TM P_

co

C _ 1 2
P

For small values of the quantity 6,

is:

6 = _._v_:!_l 2 ( u _v + =w) + u + v +w
2

we can expand the exponentiation in an infinite series in 6.

___%__

_2_ _ i = [ 1 6 ] 7-i i = __X__ [ _ 6 + i i 2p_ " _-i 2 _-i 6
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Retaining only terms up to order 2 in _, B, u, v, w, we have,

_P__ I _X_
p_ - " " 2 _ ( u - _ v + _ w ) + (I-M) u + v + w

or

p [ 22 2 2]c - I 2 - - 2 (u - _v+=w) + (I-M®) u + v + w
P _ 7 p M

I 2 2 2 2 2 2 12 u + (I-M) u + ( v - B ) _ + ( w + e ) Joo

Where, to first order, the freestream is represented by,

I _+
x y z

Planar Components

Surface pressure distributions are calculated for planar components
using the first-order linearized form

Cp _ -2u/U = -2[(u/U)IND ± CPNET/4 ]

The ± signs refer to the upper and lower surfaces respectively. The term

(u/U)IN D consists of the velocities induced by the isolated bodies and other

vortex and source panels. These velocities are obtained by multiplying the

(u/U) influence matrices by the appropriate panel strengths. The CPNET/4

term accounts for the u/U perturbation velocity induced by the local

distribution of vorticity and changes sign from upper to lower surface. The

total (u/U) and CPNET values are the result of taking linear combinations of

all the basic and unit solutions.

FORCES AND MOMENTS

Slender Bodies

The forces and moments are obtained from the surface integrations. Let ds

be an element of arc length at a given x section, and let x be

nondimensionalized with respect to the body length L. First performing line

integrals at each section and then integrating over x gives,

I
F

x2 = I _ Cp(BV/ax)ds dx

q L 0
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I
F

----'Y--_ - f _ C dzdXp

q L 0

1
F

z, f _ Cpdy dx

q L 0

1 1
M

x _ _ f _ (z_%G)Cpd_dx _ f _ yCpdydx
q.L 0 0

1
M

--Y--3 f _ Cpdy dx_ _ (X-XcG)

q L 0

1
M

= (X-XcG) C dz dxP
q L 0

In terms of these expressions, the commonly used aerodynamic
coefficients are

F
x L

C -
x 2

q L SREF

F 2

C _ _ L
2

Y q L SREF

F 2

LC -
z 2

q L SREF

C2

S 3
x L

b SRE F
q L

M s

C - __M L
m 3

q_oL SREF

C
n

M 3
z L

3 b SRE F
q L
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where L is the body length and c, b and SREF are configuration reference
chord, span and area, respectively.

Cross-coupling between the pitch, sideslip, and rotary motions through
the product and quadratic terms in equation (18) is neglected.

Paneled Bodies

A surface differentiation done on the perturbation potential for each

of the basic and unit solutions to obtain the velocity components tangential

to the surface. The velocity normal to the surface is obtained from the

imposed boundary condition. These unit solution surface velocities are

combined to obtain the resultant pressure coefficient. To obtain the

section forces and moments, component forces and moments, and configuration

forces and moments, a surface integration is done. Each computed pressure

coefficient is multiplied by the panel area and the proper component of the

surface normal, and the result is summed over all of the body panels.

Planar Components

The perturbation velocities for each of the basic and unit solutions

are combined to give the resultant pressure coefficient. The net pressures

and pressure coefficients are then integrated numerically to give the

section forces and moments, component forces and moments, and configuration
forces and moments.

Since the vortex panels have a constant pressure distribution, a block

integration scheme is employed. With the exception of drag, these basic and

unit force and moment coefficients are combined in a linear manner to

produce the aerodynamic characteristics for any desired flight condition.

Since drag varies in a parabolic manner, it must be considered on a point by

point basis as defined in a later section.

The longitudinal normal force distribution on the bodies is calculated for

each solution. The load distribution on the interference shell portion of

the body is given by integrating over all vortex panels at a given

longitudinal station.

Normal Force

N

C i > CPNETC w _ Aicos (0 i)
n _ LAx

i-I I

where N is the number of panels around the shell, L is the length of the

body, Ax is the length of the interference shell segment, A. is the panel
i

area, and C I - 2 for a centerline body or C I - i for an off centerline body.

This carryover load distribution is added to the previously calculated

isolated body longitudinal load distribution.
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The section characteristics of planar components are determined by a
chordwise summationof panel data at each span station and are given by the
following equations:

Local Normal Force:
Nc

C - i _-- Cp A.
n c As NET. i

i-i l

Weighted Normal Force:

c I
C

n cAV G cAV G As

Nc

Cp A i

i=l NETi

Weighted Lift Force:

Center Of Pressure

c i
C 2 =

cAV G cAV G As

i
X = 2
c.p. c c As

n

Nc

_ Cp Aicos(gi )
NET.

i=l i

Nc

L Cp Ai(xi-XLE)

i-I NETi

where Nc is the number of chordwise panels, @ is the section dihedral angle

and As is the width of the span station and is given by

2 2 1/2
As - [ay + Az ]

The section characteristics due to the reaction of a jet flap are

calculated by taking the appropriate component of the reaction force.

Reaction Normal Force:

C C C

C - C sin 6_Tj = C 6_Tj
n CAV G _ CAV G _ CAV G

where 6jT is the total deflection angle of the jet.

Reaction Lift Force:

C C

C2 - C
CAV G n CAVG

cos 8

Component forces and moments including edge vortex effects are given by

the following equations:
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Lift:
N Ns

CLSREF- FI > Cp Aicos(0i) + >
NET.

i-i I j-i

2 iCT
+ Cr CskA(X/CT) k TL k

k-i

(l'Ksj) Csj cJ asJ _Lj

Side Force:

N Ns

CySREF-FI > Cp Aisin(8i)- > (l-Ks) C cjAsj_y
• S. °

i-I NET.I j=l J J J

NC T

CT _ CskA(X/CT)k Ty k

k-i

Rolling Moment:
N

C2bSRE F --F2 _ CPNET.Ai[(Yi'YcG)C°S(0i )+ (zi'ZcG)Sin(0i)]
i-i l

Ns

-> (I-K s ) C
• S.

j-i J J

i CT- CT

k=l

cjAs'. [ +] (YLE'YcG)_L. (ZLE'ZCG)_y. ]
J ]

Csk(AX/CT) k [(YT'YcG)TLk + (ZT-ZcG)TYk ]

Pitching Moment :

CmC SRE F -- F I

N

CPNET'Ai (xi-XcG) c°s (8 i)
i-i i

Ns 2 NCT

_ (I-K s )C s cjAsj(XLE'XcG)_L. " CT _ CskA(X/CT)kTYk

j-i J J J k-i

Yawing Moment :
N

CnbSRE F - F2 } CPNE T Ai(xi-XcG)Sin(Oi)

i-i i

Ns NCT

} )Csj J ] 2 _ skA(X/CT)kTYk+ (I-K s c As'. -xCG)_y + CT(X T xCG ) C

j-i J (xeEj J e .p. k-i

where N is the number of vortex panels on half of a symmetrical component

(or total for an asymmetrical component) and FI, F= are given by
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symmetric loading:

antisymmetric loading:

F I = i asymmetric geometry

= 2 symmetric geometry

F_ - i asymmetric geometry

- 0 symmetric geometry

F z = I asymmetric geometry

= 0 symmetric geometry

F 2 = i asymmetric geometry

- 2 symmetric geometry

For the leading and side edge vortex terms, Ns is the total number of

spanwise panels for both component halves, NC T is the number of tip

chordwise panels, x T is the axial location of tip vortex center of

c.p.

2
pressure, As' = AsJl + T and the rotation factors _ and T are derived in

appendix B and defined below.

Leading Edge Vortex Rotation:

G L = - sin _ (cos A cos 6) + cos _ (cos 0 sin 6 sin 8 sin A cos 6)

+ Ao/IAol[sin _ (cos A sin 6) + cos _ (cos _ cos 6 + sin # sin A sin 6)]

_y = cos _ sin A cos 6 + sin 8 sin 6

+ Ao/[AoI[sin 9 cos 6 cos 0 sin A sin 6]

where 6 is the slope angle of the leading edge camber line and the sign of

coefficient Ao (from equation 13) is used to determine the direction of

vortex rotation.

Side Edge Vortex Rotation:

T L = ± cos _ sin 8 + Cno/]Cno [ (sin _ sin 6 + cos _ cos 8 cos 6)

Ty - ± cos # + Cno/ICno I sin 0 cos 6

where 6 is the slope angle of the tip camber line, i is plus for the left

side and negative for the right side of the configuration and the sign of

coefficient C (from equation 14) is used to determine the direction of
n o

vortex rotation.
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The x-coordinate of the center of pressure is given by

x - -CmC/C L +c.p. xCG

For interference shell components, the total forces and moments of the

corresponding isolated body are added to those of the shell.

Jet reaction forces and moments are obtained from a spanwise summation

of the jet flap section characteristics:

Lift:

N

- FI } (C c).6._ As.cos 0.
CLjET SREF i-I _ i 3r i l l

Side Force:

N

_ -F 2 >
CYJET SREF i=l

(C c).6.mlJ_iAs'sinl 0i

Rolling moment:

N

_ "F__22
C2JET bSREF i=l

Pitching moment:

N

C = "FI

mjEr _S_EF i=l

Yawing moment:

N

C - F2 >

njET bSREF i-1

(C c)i6JTiASi[COS 8i (yi-YcG) + sin 8 i (zi-ZcG)]

(C#c)i6jT.ASiC°S 8i (xi'XcG)
1

As.sin 8
(C_c)i6jT i l i (xi'XcG)

where N is the number of spanwise jet flap stations and F I and F_ are as

previously defined.

The forces and moments for the complete configuration are obtained by

summing those of the individual components.
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DRAG ANALYS IS

Estimation of configuration aerodynamic efficiency requires the

calculation of drag. The analysis separates the computation into skin

friction and pressure drag components that are assumed to be independent of

each other. The following form is considered and produces nonparabolic

polars as a result of the incorporation of edge force considerations.

CD - CD + CD + CD + CDIviscous wave base ift

The specific techniques used for the various drag evaluations are discussed
below.

SKIN FRICTION

Several well established semiempirical techniques for the evaluation of

adiabatic laminar and turbulent flat plate skin friction at incompressible

and compressible speeds are used to estimate the viscous drag of advanced

aircraft using a component buildup approach. A specified transition point

calculation option is provided in conjunction with a matching of the

momentum thickness to link the two boundary layer states. For the

turbulent condition, the increase in drag due to distributed surface

roughness is treated using uniformly distributed sand grain results.

Component thickness effects are approximated using experimental data

correlations for two-dimensional airfoil sections and bodies of revolution.

Considerations such as separation, component interference, and discrete

protuberances (e.g. antennas, drains, aft facing steps, etc.) must be

accounted for separately.

In the following, a discussion is presented for a single component

evaluation in order to simplify writing of the equations and eliminate

multiple subscripting. The total result is obtained by a surface area

weighted summation of the various component analyses as described on page
44.

Laminar/Transition

A specified transition option is provided in the program. The

principal function of the calculation is to provide the conditions required

to initialize the turbulent solution. In particular, the transition point

length and momentum thickness Reynolds numbers are required.

R = R(XTRAN/L)L
XTRAN

= 0.664
RgTRAN JRXTRANC
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where

* . .

C = (_ /,_)(T /T )

T /T - i + 0.72 [(Tr/T ) - i]

Tr/T _ -

z

1 + JP-r (7-1)/2 M 2 - 1 + 0.851(7-i)/2 M 2

2.270 x I0 -8 T3/2/(T+I98.6) Ib-sec/ft 2

This solution is based on the laminar Blasius result (8, chapter VII) in

conjunction with Eckert's compressibility transformation 9. This option

permits an assessment of the reduction in skin friction drag if laminar flow

can be maintained for the specified extent. It does not establish the

liklihood that such a condition will be realized in practice or to what

extent.

Turbulent

Smooth and distributed rough surface options have been provided in the

analysis. In either case, the solution is initialized by matching the

momentum thickness at the transition point produced by the laminar solution.

That is, an effective origin (commonly referred to as a virtual origin) is

established for the turbulent analysis.

For the hydraulically smooth case

C F RAx = 2 ROTRA N

RAx

R_

solve for C_ using,

= C F RAx / C F

Ax - RAx / R

z L XTRAN + Ax

(R)(_)

C F from equation (19)

for known C F RAx

0.242[sin-i -+ sin i_]/ [(_-I)/2M C_] I/2= log,0(C_) - _ log10(Tr/T )

then,

C F - 28x_/t _ (28TE/2)(_/L) = C_(2/e)

(19)
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where

XTRAN -
R'IR

XTRAN

r,
- (2A 2 B)[B 2 + 4A2] -I/2

- B[B 2 + 4A2] "I/2

A 2 - (7-1)/2 M 2_ (T_/T r)

B 2 - [I + (7-1)/2 M_](T_/Tr)" i

r - 0.88

o_ - 0.76

The compressible turbulent flat plate method used here is that proposed
I0

by Van Driest based on the Von Karman mixing length hypothesis in

conjunction with the Squire-Young formulation for profile drag (8, chapter

XXIV) as applied to a flat plate.

For the distributed rough case

AX

C F
r

RAx

AK

XTRAN

[1.89 + 1.62 loglo(AX/Ks)]

2 CF I RSTRA N
r

-i

R RAxi+ 1

L - XTRAN + Ax

[1.89 + 1.62 loglo(2/Ks)]

"2'5[1 + r(7-I)/2 M_] "I

-2-5[i + r(T-l)/2 M2] "I

C F

C F =

C_ (_/L)

MAX [c , ]
FSMOOTH CFRouGH
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The turbulent flat plate method used here is that of Schlicting (8,

chapter XXI) which is based on a transposition of Nikuradse's densely packed

sand grain roughened pipe data. The effect of compressibility is due to the
11

reduction in density at the wall as proposed by Goddard. The selection of

the equivalent sand grain roughness for a given manufacturing surface finish
12

is made with the aid of Table II which was taken from Clutter.

TABLE II

Type of Surface

Aerodynamically smooth

Polished metal

Natural sheet metal

Smooth matte paint, carefully applied

Standard camouflage paint, average application

Camouflage paint, mass-production spray

Dip-galvanized metal surface

Natural surface of cast iron

Equivalent Sand Roughness

K (inches)
s

0

0.02 - 0.08 x I0

-3
0.16 x i0

-3
0.25 X i0

-3
0.40 x I0

-3
1.20 x I0

-3
6x I0

-3
i0 x I0

-3

Thickness Corrections

The foregoing evaluations produce an estimate of the shearing forces on

a flat plate (at zero angle of attack) for a variety of conditions. As an

actual aircraft has a finite thickness, an estimate of pressure gradient

effects on skin friction and boundary layer displacement pressure drag

losses is required. A common procedure for accomplishing this and the one

which will be used here is based on non-lifting experimental correlations

for symmetric two-dimensional airfoils and axisymmetric bodies. The

following relations derived by Horner (13, chapter VI) are used,

respectively.

K - Cd/(2CF) m I + K I (t/c) + 60 (t/c) 4

- CD/CDF
- I + 1.5 (d/L) 3/2 + 7 (d/L) 3

Horner recommends K I - 2 for airfoils with maximum thickness at 30%

chord and K I - 1.2 for NACA 64 and 65 series airfoils. In this regard, the

best information available to an analyst for his particular contour should

be used. This is especially true for modern high performance shapes such as

the supercritical airfoil.
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Total Viscous Drag

The aircraft total viscous-drag coefficient is estimated by a sum of

the preceding analysis over all components (i.e. wing, fuselage, vertical

tail, etc.). That is

N

CD . - _ CF.(Sj/SREF)Kj

vlscous j-i J

The component length used in the calculation of the skin friction

coefficient is the local chord for planar component segments and the

physical length for bodies and nacelles.

BASE DRAG

Blunt base increments are estimated at subsonic and supersonic speeds

by

ACDBAs E z CPBAsE SBAS E / SREF

where .CPBAsE i 0.139 + 0.419 (M - 0.161) 2", M_< i

-CPBAs E = M-2_ 0.57 M"4_ ", M_> I

The expressions for the base pressure coefficient are derived from

correlation of flight test results for the X°I5, various lifting bodies, and

the space shuttle. Power effects are treated as reductions in base area in

the present analysis.
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POTENTIALDRAG

Onehundred percent suction drag due to lift and supersonic wave drag
due to thickness can be evaluated by integration of the momentumflux
through a large circular cylinder centered on the x-axis and whose radius
approaches infinity (figure 9).

Z

_.._ wave drag momentum
flux

/ ,, ..s

% + + "__,'...;;__ I I \ vor "

=:o,,ooo., \-
Trefftz plane

Figure 9. Integration of Momentum Flux Through Large Circular Cylinder.

The resulting expression for the total pressure drag is

2 2

CDSRE F - -2 ff _x_rdAe + ff(_y + _z)dA3 - CDwSRE F + CDvSRE F
A 2 A3

The first term represents the wave drag due to momentum losses thru the

side of the cylinder caused by standing pressure waves at supersonic speeds.

The second term represents the vortex drag which arises from the kinetic

energy left behind in the Trefftz plane by the system of trailing vorticies.

Vortex Drag

The vortex drag may be computed when the distribution of trailing

vorticity in the Trefftz plane is known. The assumptions of linearized thin

wing theory result in a vortex sheet which extends directly downstream of

all lifting surfaces. By changing a surface integral for kinetic energy to

a line integral over the vortex sheet in the Trefftz plane the following

expressions for lift and drag result.
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CL - (CAvG/SREF) _ Cn(N)cos 9(7) dN

where
CDv- (CAvG/SREF){ Cn(N)w_(N)dN

C vortex sheet contour

n weighted section normal force coefficient Cn(C/CAvG)

w asymptotic normal velocity on the vortex sheet

vortex sheet branch coordinate

0 inclination of vortex sheet with respect to y-axis

The analysis computes the normal velocity on the vortex sheet, w
i

by assuming the vortex sheet is composed of finite trailing horseshoe
vorticies whose strength is proportional to the local section Cn(S). The
normal velocity is computed at a control point located midwaybetween the
trailing vortex segments (figure i0).

v

control point i

. _° (Yc. 'zc. )
l l

(Yi,Zi) Y

Figure i0. Trefftz Plane Vortex Wake Nomenclature.
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V - CAvGFj/(2_r) e4

F _ [C C ]/2
n. n.

J J

n e4 (Yi+l'Zi+l)

\ t /

\\1 //,,- \/

..............)
/

/
/

(Yi,Zi)

)gy+r = [(Yc.-Yj (Zc.- zj)ez]
1 i

_4 = [-(Zci- zj)_y+ (Yci-yj)_z]/r

-+

A_ i = (Yi+l-Yi)ey + (Zi+l-zi)e z

= AYie + Az. ey z z
_I _+

n = As. [-Az.e + Ayi_ ]i ly z

W z
co

i

4 -+

V.n 2{- cAV G /(2=r Asi) z - z )Az i + (Yc
ci J i

I
yj)AYi_ F. -J Aij Fj

Therefore CD - _ w_. n. A_i
1 1

i

where

Wave Drag

_i Aij Fj

J

The integral for wave drag

CDwSRE F = -2If 4x4rrdxd#
As

may be simplified by allowing the cylindrical surface of integration to

recede infinitely far from the disturbance. Under these conditions, the
spatial singularity simulations can be reduced to a series of one-

dimensional distributions. The basis for this reduction is the finding by

Hayes (14) that the potential and the gradients of interest induced by a

singularity along an arbitrary trace on a distant control surface, say PP'

of figure ii (or alternately described by the cylindrical angle 0), is

invariant to a finite translation along the surface of a hyperboloid

emanating from the trace and passing through the singularity. As the apex
of the hyperboloid is a great distance away, the aforementioned movement is

along a surface which is essentially plane; it will be henceforth referred

to as an "oblique plane". Since a singularity is a solution of a linear

differential equation, all singular solutions which lie on the surface of

61



\

\

\

/

Figure Ii. Distant Control Surface Geometry.
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the same hyperboloid (oblique plane) may thus be grouped to form a single

equivalent point singularity whose strength is equal to the algebraic sum of

the individual strengths and which induces the same potential (momentum)

along the trace as the group of individual singularities.

This finding provides the basic technique for reducing a general

spatial distribution of singularities to a series of equivalent lineal

distributions. This is accomplished by surveying the three-dimensional

distribution longitudinally at a series of fixed cylindrical angles, 0. At

each angle, the survey produces an equivalent lineal distribution by

systematically cutting the spatial distribution at a series of longitudinal

stations along its length. At each cut, the group of intercepted

singularities is collapsed along the "oblique plane" to form one of the

equivalent point singularities comprising the lineal distribution.

The far-field expression for the wave drag of a general system of lift,
and side force elements is

2_ _

CDwSREF = (4_U)'2 f0 __f __f ht(_le ,0)h_(e2,0)inl_1-e21 deld_2d0

where

h (e 8) =
e ' f(e,8) gz(e,8) sin 0 gy (e,0) cos 8

is the equivalent lineal singularity strength at

the cylindrical angle 9

f (e,O) = equivalent source strength per unit length

_-I U gz(_,8) - equivalent lifting element strength per unit length

_-I U gy(e,8) = equivalent side force strength per unit length

These strengths are deduced from the three dimensional singularity

distributions by application of the superposition principle along

equipotential surfaces. For a distant observer such surfaces are planar in

the vicinity of the singularity configuration. The individual singularity

strengths are related to the object under consideration by the requirement

of flow tangency at the solid boundary. Lomax (15) derived the following

approximate expressions between the equivalent singularity strengths and a

slender lifting object.

f (e,e) = U a/ae[A(e,e)]

gz(e,8) = (_U)/2 Ic Cpdy

gy(e,8) = (_U)/2 fc CpdZ

where (see figure 12)

A(e,8) is the Y-Z projection of the obliquely cut
cross-sectional area

is the contour around the surface in the oblique cut
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\

Figure 12.

o

Areas and Forces Pertinent to the Evaluation of

Wave Drag from the Far Field Point of View.
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Utilizing the singularity strength expressions derived by Lomax, the

following expression for wave resistance based on the far field theory of

Hayes is obtained

2_ L(e) L(9)( 2

CDwSRE F - i _ f f f ta /a_,[A(e1,8)]
(4_) 0 -L(0) -L(8)

- fl/2 a/a_,[sin9 f Cp(el,8)dy + cos8 f Cp(e,,8)dz]}
C C

{22 Cp(e 2 Cp( }a /Oe_[A(e_,8)] _/2 O/0e_[sinO f ,O)dy + cos0 f e2,0)dz]

C C

In[_l-e21 deld_2d8

In order to facilitate subsequent discussion, the above result is

manipulated into the following form

CDwSREF=[4_2L2(8)]I f0 fo fo 0 /0et[Ae(el,O)]0 /Oee[Ae(e2,O)]in[el-e2[delde2d8

(20)
where the effective A is given by,

e

Ae(e,0) - A(e,0)- B/2 f f Cp(e,0)[sin 0 dy + cos 0 dz] de
0 C

A requirement for this transformation is that

A'(O,8) = A'(L,8) = 0
e e

In accordance with equation 20, the wave drag of a configuration is the

average of the wave drag of a series of equivalent bodies of revolution.

The drag of each of these bodies is calculated from a knowledge of its
longitudinal distribution of normal cross-sectional area. For each

equivalent body, these areas are defined to be the frontal projection of the

areas and the accumulation of pressure force in the theta direction

intercepted on the original configuration by a system of parallel oblique

planes each inclined at the given Mach angle. The common polar angle (0) of

the system identifies the equivalent body under consideration.

Nacelles are assumed to swallow air supersonically. That is, the duct

is operating at a mass flow ratio of unity. Consistent with this

assumption, the equivalent body cross-sectional area distribution is

increased by the oblique projected duct capture area at all stations ahead

of the duct which are intercepted by an oblique plane.

Blunt base components are extended (maintaining constant cross-

sectional area) sufficiently far downstream to prevent flow closure around
the base.

In addition to a geometric description, a definition of the pressure

distribution acting on the configuration is required. The vortex panel

analysis is used for this purpose. The thickness pressures for planar
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components have tacitly been neglected under the assumption that the
surfaces are sufficiently thin that the net pressure coefficient is
representative of pressure acting on the oblique section.

Estimation of the wave drag based on equation 20 depends on solution of
integrals of the type

I i

I - 2_ G"(xl)G"(x2)Inlx*" x21dxldx2
00

of a numerically given function G(x). Evaluation of such forms has been
16 17

studied by Eminton ' for functions having G' (x) continuous on the interval

(0,i) and G'(0) - G'(1) = 0. In such situations, G'(x) can be expanded in a
Fourier sine series. It can then be shown that

oo

I _ NA N

N=I
where

_T

AN=

0

G'(x)sin(N_)d_

Eminton then solved for the value of the Fourier coefficients which result

in I being a minimum, subject to the condition that the resulting series for

G(x) be exact for an arbitrarily specified set of points (0,i), El, i-l,n.

This approach produces the following result

n n

I -- --4 [G(1)-G(0)]2 + _ _ _ C C.f.ij lj
i=l j-i

where

C.l - G(_i) -G(0) -[G(1)-G(0)]_i

I { - 2 (l-2ei) }#i = _ cos l(l-2ei) - J ei(l'Ei)

i
e. - " I< i<n
l (n+l) ' - -

-i

fij = [Pij ]

(_i-ej) 2 In

]

- _.+ 2Jei(j(l- (i-() ][_i+ej 2e i ] ei ) j

J[(i+_j - 2_i_ j- 2Jeiej(l-ei)(l-_ j) ]

+ 2 (_.+E.
i j eiej)Jei_j (l- _i) (I- ej)
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The solution of equation 20 for wave drag is accomplished by use of the
following identities.

G(Ei,8 ) - Ae(_i,8)

2

CDw(0)SRE F - I(0)/ L (8)

2_ _/2

= i _ CDw(0)d0 - ! f CD (0)d8CDw 2_ _ -_/2 W
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DRAGDUETOLIFT

CDI00 calculation. In this
case the CD0calculation
is considered more reliable
and the CDLcurve is found
relative to CD0and the suction level.

In the discussion which follows, certain limiting (zero and one hundred
percent suction), and attainable edge force polars are defined. They are
related to one another as indicated in the following sketch.

Iuu_CDI00 C

If CDI00 > CD0, there is a _/ J DL
slenderness problem in the CL I

CDL

The fixed one hundred percent suction drag due to lift (i.e. CDI00) is

given by equations 20 through 22. Specifically

CDI00 - CDv M<I

- CDv + CDw - CDwITHICKNESS
M>I

The zero suction drag due to lift is calculated by numerically

integrating the net pressure distribution times the projected area in the

streamwise direction over each of the planer surfaces. The following block

integration scheme is used to sum over all quadrilateral panels.

where

and

N

CD0 = FI(SREF )°I _ CPiAi_i

i=l

Cp.
l

Cp. + _ 8Cp./a= + 6 aCp./86

i= 0 l l

_0iis due to twist and camber, 6 is the control surface deflection, and a.=ll

for control surface panels and a. - 0 for non control surface panels. F I - 2
i

for symmetric geometries and F I _ 1 for asymmetric geometries.

Edge forces are neglected in this evaluation.

The drag due to lift for the total configuration is based on linearized

potential (i00 percent leading edge suction) calculations plus corrections

to account for suction losses and associated edge vortex forces
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Ns Nc T

= + -ISREF _ 2 -i _ Csk_(X/CT)kTD kCD L CDI00 (I )C c.As'._ + C (SREF)
i=l "Ksj sj j J uj k=l

Ns Nc T

- CD0 + (1-K s .)Cs. + CSkA(X/CT)kTD k
i=l 3 3 J k=l

and the leading edge and side edge rotation factors, _D and TD, are (see

derivation in Appendix B)

_D - cos _ cos A cos 6 + sin _ (cos 8 sin 6 - sin _ sin A cos 6 )

+ Ao/IAoI[-cos a cos A sin 6 + sin _ (cos 9 cos 6 + sin 0 sin A sin 6)]

where 6 is the slope angle of the camber line perpendicular to the leading

edge and the sign of coefficient A 0 from equation 13 is used to determined

the direction of vortex rotation.

TD = + sin a sin 8 C i- n01Cn0

-I
(-cos a sin 5 + sin a cos 8 cos 6)

where 6 is the chordwise slope angle of the tip camber line, plus refers to

the left side and negative to the right side of the configuration and the

sign of coefficient C from equation 14 is used to determine the direction
no

of vortex rotation.

An estimate of the average level of leading edge suction for the

complete configuration is based on the following equation:

SUCTION = (CDL- where for K s - 0CDL)/(CD L CDIo0)' CD L CD L

= 1.0 ; => L.E. Suction, if any, is totally recovered.

< 1.0 ; => L.E. Suction is partly recovered, the

remainder is converted to vortex lift and

drag.

69



HYPERSONIC

High Machnumber analysis is based on non-interfering constant pressure
18

finite element analysis.

An arbitrary configuration is approximated by a system of plane
quadrilateral panels as indicated in figure 13.

Figure 13. Configuration Represented by Surface Quadrilateral Panels.

The pressure acting on each panel of a vehicle component is evaluated
by a specified compression-expansion method selected from the following
options.
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Impact Flow Shadow Flow

i.

2.

3.

4.

5.

6.

7.

8.

9

i0

ii

12

13

14

15

16

Modified Newtonian

Modified Newtonian+Prandtl-Meyer

Tangent wedge

Tangent-wedge empirical

Tangent-cone empirical

OSU blunt body empirical

Van Dyke Unified

Blunt-body shear force

Shock-expansion
Free molecular flow

Input pressure coefficient

Hankey flat-surface empirical

Delta wing empirical

Dahlem-Buck empirical

Blast wave

Modified tangent-cone

I. Newtonian (Cp - 0)

2. Modified Newtonian+Prandtl-Meyer

3. Prandtl-Meyer from free-stream

4. OSU blunt body empirical

5. Van Dyke Unified

6. High Mach base pressure

7. Shock-expansion

8. Input pressure coefficient
9. Free molecular flow

A discussion of the various methods is presented in appendix C.

Specific analysis recommendations are provided by the program on a component

by component basis.

In each method, the only geometric parameter required for determining

panel pressure is the impact angle, 6 , that the quadrilateral makes with

the free-stream flow or the change in angle of a panel from a previous point
where

and

6 - x/2-8

cos e -(n-V)/(Inl IVl)

-ni+nj +nk
x y z

-' " (% -'V_ - (V_cos e cos fl)i - (V sin + sin e cos #)k

= p_ - q_ rk

7 - (X-XcG)_ + (y-YcG)_ + (Z-ZcG)_

Panel switching between impact or shadow conditions is based on 6 > 0 in the

former case and 6 < 0 in the latter.
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AERODYNAMIC CHARACTERISTICS

The pressure on each panel is calculated independent of all other

panels (except the shock-expansion method). If the vehicle is rotating, the

local pressure coefficient must be corrected to free-stream conditions.

That is

_+ 2 2

Cp - Cp IVI /V
local

Vehicle component forces, which are in the body axis system, are obtained by

summing panel forces

AC _ -i _ Cpnx Ax SREF

AC - -I > CpnyAy SREF

AC - -i _ Cpnz Az SREF

_C_ - (bSREF)I { _ Cp(Z-ZcG)nyA + _ Cp(y-ycG)nzA }

ACre--( CSREF)I { _ Cp(X'XcG)nzA + _ Cp(Z'ZcG)nxA }

AC n - (bSREF)I { _ Cp(X-XcG)nyA- _ Cp(Y-YcG)nxA }

where

A _ panel area

x,y,z - coordinates of panel centroid

Configuration buildup and total vehicle coefficients are obtained by

appropriate summation of component contributions.

The conversion from the body axis system to the wind axis system for

the lift and drag coefficients is based on the standard trigonometric

relations.

C D = C cos_ cos_ - C sin E + C sin_ cos_x y z

C L - -Cxsin_ + CzCOS_

The vehicle static stability derivatives, which are in the body axis system,

are calculated by the method of small perturbations. Since the basic force

and moment characteristics are non-linear, these parameters vary with

attitude angle
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Cx - [(Cx) - (Cx) ]/As (Axial)

Cz - [(Cz) - (Cz) ]/As (Normal)

Cm_ - [(Cm) +A - (Cm)_]/As (Pitch)

- - (Cy) ]/A_ (Side)
Cy_ [(Cy) +A_

R

Cn_ [(Cn) - ]/A_ (Yaw)_+n_ (Cn)_

C£ - [(C_) - (C_) }/A_ (Roll)
_+A_

The damping derivatives due to vehicle rotation rate are obtained in a
similar manner

C ^ - {[(Cm) (Cm) ]/Aq} /[(c)/(2V) ]
mq q+Aq q

etc.

Similarily the control surface derivatives are

m [(CL ) - (CL) ]/A6
CL6 6+A6 6

m

Cm6 [(Cm) 6+A6 - (Cm) 6 ]/A6

- [(c_) - (c_) ]/A6
C26 6+A6 6

- [(Cy) - (Cy) ]/A6
CY6 6+A6 6

etc.

It is the last term in the numerator of these definitions that are being

calculated and printed in the program output.
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CONCLUSIONS

An aerodynamic configuration evaluation program has been developed and
implemented on a time sharing system with an interactive graphics terminal
to maximize responsiveness to the preliminary analysis problem.

The solution is based on potential theory with edge considerations at
subsonlc/supersonic speeds and impact type finite element analysis at
hypersonic conditions. Three-dimensional configurations having multiple
non-planar surfaces of arbitrary planform and bodies of non-circular contour
may be analyzed. Static, rotary, and control longitudinal and lateral-
directional characteristics maybe generated.

IBM 3081 computation time of less than one minute of CPU/Machnumberat
subsonic, supersonic or hypersonic conditions for a typical simulation
indicates that the program provides an efficient analysis for systematically
performing various aerodynamic configuration tradeoff and evaluation
studies. PRIME 850 and VAX 11/780 computation times are approximately
fifteen times longer.
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APPENDIX A

SUBSONIC/SUPERSONIC FINITE ELEMENT DERIVATIONS

VELOCITY PERTURBATION POTENTIAL

The velocity potential for a point source can be used to obtain expressions

for the velocity potential induced by source and vortex finite elements.

Integrations are carried out in the z=0 plane and coordinate transformations

are used to obtain expressions for constant source and doublet panels having

arbitrary orientation. Consider a surface S having a unit normal,

n _ n e q- n e + n e

x x y y z z

where ( ex, ey, _z ) are the unit vectors in the (x,y,z) coordinate system.

The velocity potential for a source located at the point (Xo,Yo,Zo) on S is

given by the expression,

ka 2 2 2 2 2

4s (x'y'z) - " 4=R ; R = (x-x0) + _ [(Y'Y0) + (Z-Zo) ]

2 2 2

2 2 2 a a a

therefore [] _s - 0 , where [] I (I-M) ----f + ---_ + 2

ax By az

The velocity potentials induced by a distribution of sources on the surface

S is derived more easily if we transform variables to a coordinate system
^ A ^ A

(x,y,z) which has the source distribution on the z i 0 plane. This

transformation should also preserve the governing differential equation.

First rotate the coordinate system by 4 to eliminate the y component of the
normal.

- n n

¥ z

n+oz n+nz
In the resulting coordinate system the normal will have components

( -sin _ , 0, cos _ )

where n = - sin
x

n - - cos _ sin
Y

COS _ COSn
Z

2

cOS

2 2

n + n
y z
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There finally results the following change of variables

2

^ _ sin _ [ (Z-Zo) cos 4 (Y'Yo) sin 4 ] +
X =

(X-X0) COS

A

Y

2 2 2 1/2
[ cos e + _ sin _ ]

(Z-Zo) sin _ + (Y-Yo) cos

cos e [ (z-z o) cos _ - (Y'Yo) sin _ ] (X-Xo) sin

2 2 2 1/2
[ cos _ + _ sin _ ]

or written in terms of the panel normal,

2

^ [ (Y'Yo) n + (z-zo) n ] _ n +
x = y z x

2 2 1/2 2 2
[ n +n ] [ #n + n

y z x y

= 2 1/2
(x-x o) [ n + n ]

y z

2 1/2
+n ]

Z

^ [ (Y-Yo) nz (z-z o) ny ]
y =

2 2 1/2
[ n +n ]

y z

^ [ (Y'Yo) n + (Z-Zo) n ] + (X-Xo) n
z = y z x

2 2 2 1/2
[ _n + n +n ]

x y z

If the points (x,y,z), and (xo,Y0,Zo) both lie in the plane S, then a vector

-+

joining these points must be perpendicular to n,

(x-xo) n + (Y'Yo) n + (Z-Zo) n
x y z

= 0

A

and therefore the points lie in the plane, z = 0. This transformation

preserves the governing Prandtl-Glauert differential equation, since we can
write,

2 2 2 2 2 2

2 a a a 2 a a

(I-M) ^---F+ ^---f+ ^2 = (I-M) ---f + ----f+ 2

ax ay az ax ay az

and if again the point (Xo,Yo,Zo) lies on S, for any (x,y,z),

^2 2 A2 ^2 2 2 2 2

x + _ ( y + z ) - (X-Xo) + _ [ (Y-Yo) + (Z'Zo) ]
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A

The velocity potential for an area in the z - 0 plane having constant source

density is obtained by integrating the influence of infinitesimal source

elements over the area. Dropping the ^ and using transformed coordinates we

have,

J" f 1 2 2 2 2 2Cs(X'Y'Z) - " 4_ J [ dxody o R- (X-Xo) + _ [(Y-Yo) + z ]

2 2

- 0 , we can say [] ¢ - 0and since [] -Ss s

A doublet at Xo, Yo, z0. is the derivative of a point source:

_D(x,y z) -
' aZ o

2

ka_ (Z-Zo) k_ (Z-Zo)

_s_X,Y,Z'Zo) - _ - s
4_ R 44 R

Integrating from Xo=fo to infinity yields the potential for a line

doublet or elementary horseshoe vortex.

k# z_H(x,Y ,z) - _DdXo = -- 2 2

fo 44 [(Y-Yo) + z ]

(X-fo)

[(2-k) + R ]

Z 0 - 0

And an area of constant vortex strength is obtained by integrating this

expression over the panel area:

 'JI_F(x,Y, z) _ 2 2

44 [ (Y-Yo) + z ]
s

(x-x0)

[(2-k) + _] dx0dY 0

R

Q
IIIII
IIIII
IIIII

The solution of these integrals is performed in the following sections. All

integrals may be checked using tables i and 2 at the end of this Appendix.

The velocity expressions may be obtained by differentiating the

velocity potentials using table I.
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SOURCE PANELS

First the integration is performed over the panels in the x o direction

as shown in figure I.

xB

i B I * R+(x'Xo) I
- dx o = - _ log

R R-(X-Xo)
xA xA

Yo

(xl,Yl)

Xo- xA(Yo)
T21

/
/
I
I
I
/
I
/

/_.

X o

(xs,Y3)

--Ii--

_,Y2)

X2"X 1 X4-X 3

T4 3 i

Y2 "Yl Y4 -Y3

(xA. xl) = T21(Y A- Yl) - 0

(x4,Y4)

(xA- xs) T43(yB-y3) - 0

Figure i. Integration Over Panels in x o Direction.

To integrate with respect to Yo a change of variables is introduced:

f = (X-Xo) T(y-y o) (x-x o)

- T(y'Yo) (Y-Yo)

= Tz z

when x o - xB ; T = T4s

- (X-XB) T(y-y o) - (x-x3) - TB(y-ys)

which is independent of Yo.

i

- T

i
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22 2 2

Therefore using T b - T + B , and integrating with _ constant

Y2 R+(x_Xo ) i Y2

Ilog dy o m - _ log

R- (x-xo) T
Yl Yl

R+(f+7)

R- (f+7)

d7

2

1 { I R+(f+7) 1 1 bR+(f+B 7) =1 _- R }71- 7 _ log + f - 3 log 2 + _ tan 2

T R-(_+q) b bR+(_+B 7) _7-_ 72

This integration may be checked using table 2.

Each of the four integration limits corresponds to a corner of the

quadrilateral. Placing the origin of the Xo, Yo coordinate system at one

2 2 2

corner, and setting B - T + fl , the contribution to • becomes:

ak f 1 R+x

_(x,y,z,T) - - -- I Y _ log --
4_ R-x

+

2

i x BR+(Tx+_ y)

(x-Ty) - 7 log 2

B BR-(Tx+fl y)

+
1 zR }z tan 2

xy-Tr

and combining each of the four corners:

• (x,y,z,T) = _(x'xl, Y-Y1, z, T21) _(x-x 2 , y-y2, z, T21 )

_(x'x3, Y'Y3, z, T43) + _(x-x4, y-y,, z, T43)

VORTEX PANELS

Analogous to the source panels the integration is first performed in

the x 0 direction.

B z (X'Xo) ( " z [ (2-k)(x-Xo) + R ]2 2 [(2-k) + ---] dx o = _ 2 2
[(Y'Yo) + z ] R [(Y-Yo) + z ]

xA

changing variables and integrating with respect to

Xo=X B

Xo-X A
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fY2 - z [ (2-k)(x-x0) + R ] - _ _ [ (2-k)(f+7) + R ]

- / _ 2 dYo j 2 2J
[(Y'Yo) + z ] 7 +_"

Yl 71

_I i 2 2 _72- (2-k) _ tan _ + _ _ log (7 + _ )_71 +

2

I R+(f+7) 2 i , bR+(f+B 7) _I+ - [ _ log + b _ - _ log 2 - f tan

R-(f+7) B bR+(f+B 7)

_R

2

d7

}
71

72

therefore for one corner or integration limit

2

kCp [ , R+x 2 1 , BR+(Tx+_ y)

_(x,y,z,T) - _ Tz _ log -- - z B - F log 2
8_ R-x B BR-(Tx+_ y)

_I zR I 2

+ (x-Ty) tan 2 (2-k) [ Tz _ log r + (x-Ty) tan

xy-Tr

and

(x,y,z,T) - _(x'xt, Y'Y*, z, T21) - _(x-x 2, Y-Y2, z, T21)

.ly }-]
z

_(x-xs, Y-Ys, z, T4s) + _(x-x 4, Y-Y4, z, T4s)

Velocity Component Transformations

The velocity expressions may be obtained by differentiating the

velocity potentials. The results of this are given on page 33. Since all

integrations were done in the ^ coordinate system, we must consider the

variable transformation to obtain the actual perturbation velocities.

a

u = -- _(x,y,z)
ax

A ^

u cos _ - w sin c,

2 2 2 1/2
[ cos _ + _ sin a ]

v

a

-- _(x,y,z)

ay

2 ^ A

- [ _ u sin c, + w cos _ ] sin

2 2 2 1/2
[ cos _ + _ sin _ ]

,%

+ V COS

W

a

_(x,y,z)

az

2 ^ ^

[ _ U sin _ + w cos _ ] cos

2 2 2 1/2
[ cos _ + _ sin a ]

A

+ v sin
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We can also write this in terms of the panel normal,

U

^ = 2 1/2 ^
u(n +n ) + wn

y z x

2 2 2 1/2
[ _ n + n + n ]

x y z

V

= ^ ^ = 2 1/2 ^
[ _ u n + w ( n + n ) ] n v n

x y z y + z

2 2 1/2 = 2 2 1/2 = 2 )1/2( n + n ) [ _ n + n + n ] ( n + n
y z x y z y z

W

2 ^ ^ _ 2 1/2 ^
[ - fl u n + w ( n + n ) ] n v n

x y z z y

2 2 1/2 2 2 = 1/2 = 2 )1/2( n + n ) [ _ n + n + n ] ( n + n
y z x y z y z

where

^ a ..... a ..... a ....

u = -w 4(x,y,z) v = -w 4(x,y,z) w - ^ 4(x,y,z)

ax ay az

The derivatives of the velocity potential expressions may be obtained by

using table i, and are given on page 33.

VERIFICATION OF THE PERTURBATION VELOCITY EXPRESSIONS

To establish that these are the correct perturbation velocities the

following criteria must be met:

i, Laplace's equation must be satisfied

2

fie +_ +_ =0
xx yy zz

or the equivalent U _ V

y x

U _ W
Z Z

V _ w

z y

2

_u +v +w =0
x y z
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.

.

.

The correct discontinuity or jump in the perturbation velocity must

occur at the surface of the quadrilateral panel area. For the source

panel the jump occurs in the normal or w velocity and on the vortex

panel there must be a jump of constant magnitude in the u perturbation

velocity over the panel area. The perturbation velocities should be

continuous elsewhere, except on the trailing vortex sheet of the vortex
panel.

The perturbation velocities must go to zero as upstream infinity is
approached.

For the vortex panel the trailing vorticity must extend straight back

to downstream infinity. This means that any discontinuity in the v

velocity must be zero outside the spanwise boundaries of the panel and

must be zero upstream of the panel.

The first criteria can be established by using the derivatives given in
table i.

The second criteria can be established by noting that all terms except

_x z R _1
tan 2 2 and tan

z
xy-T(y +z )

are continuous at z - 0. Consider these terms keeping in mind that the
contributions from all four corners must be included.

If we let

= (x-x 1) T(y-yli0_ (x-x) _ T(y-y ) 2

2 2 2 2 2

R i = (x-x i) + /_ [(y-yi ) + z ]

and use

_t _i _x A + B
tan A + tan B = tan

I - AB

then the contributions from both corners on the leading edge can be combined
as follows.

f(z)
_1 z R I _1

- tan 2 - tan

f(y-yl)-Tz

z R 2

f(y-y_)-Tz

2 2

_1 z { [f(y-y_)-Tz ]R x [f(y-yx)-Tz ]R_ }

- tan 2 2 2
[f(y-yl)-Tz ][f(y-y_)-Tz ] + z RxR 2
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If we define

1

sgn(z)- {-I z>0}z<O

_i a

lim [tan _ ] -
a_O

{_Osgn(a) b>o}b<O

_I
-_ _< tan (c) _<

and

_, z R, _, z R 2lim tan 2 tan 2

z_O f(y-yl)-Tz _(y-y2)-Tz

lim f(z)

z_O

_ { 0 (Y'Yl)(Y-Y2) > 0 }
-_r sgn(z)sgn(_) (Y'Yl)(Y'Y2) < 0

The discontinuity, or jump, in f(z) at z - 0 becomes,

Af(z) _ lim+[f(z)] lim_[f(z)]
z_O z_O

Af - 0

Y-Yl

Therefore when a similar procedure is carried out for the trailing edge

of a source panel and we subtract the results, we obtain the following jump

in the w perturbation velocity.

AW - 0 AW _ a
a

AW = - -- Af
4_
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For the vortex panel (subsonic) we have an additional term. Considering

both additional terms from the leading edge corners:

_I (Y-Yl) _I (Y-Y2) _I z(Y2"Yl)
f(z) - tan tan = tan

z z (y-yl)(y-y2)+z

{ _i (Y'Yl) _i (Y'Y2) } { 0iim tan tan
sgn(z)

Z-+0 Z Z

(Y'Yl)(Y-Y2) > 0 1

(Y-Yl)(Y'Y2) < 0 J

{ _I (Y-Yl) _i (Y-Y_) } { 0A tan tan - 2_
Z Z

(Y'Yl)(Y'Y_) > 0

(Y'Yl)(Y-Y_) < 0 J

Af _ 2_ Af - 0

Y=Yl Y=Y2

Therefore combining the terms

_I z R: _I z R 2A tan tan

f(y-yl)-Tz f(y-y2)-Tz

_ 1 Y'Yl
- tan

Z

_I

- tan

Y-y_

Z

- Af(z) - lim [f(z)] - lim [f(z)]
z_0 + z_0"

0 (Y-Yl)(Y-Y) > 0
-4_ otherwise

, or f<0 }
Since contribution from each panel corner is:

AU m
C _ _i zR

---P-- A tan _l
8_ xy-T(y +z )

i}tan
Z

C

Av z - T ---P-- A {
8_

_I

tan

z R

2 2

xy-T(y +z )
i }tan

E
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after summingall four panels corners (both edges), we obtain the following
for Au and Av

Au = 0

Av - 0 _-X1) -

i

Au - - _ Cp

Av - T12 ½ Cp

(X-X s )

T21(y-yl) - 0

T43(y-y 3) - 0

AU - 0

Av =

(T21-T4s) _ Cp

region of

trailing

vorticity

Y'Y*-Y3 Y=Y=-Y4

To verify the third criteria we must show that all of the functions

approach zero when all four corners are considered as x _ -_

2 2 2

i R+x 1 2 2 I _ (y +z ) 1 2 2

log -- _ log (y + z ) = _ log _ _ log (y + z )

R-x (R-x)

1 2 1 2

= " 7 log (R-x) " 7 log /3
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Therefore considering both corners on the leading edge of the panel

lim JR] - Ixl

X_-_

lim _ log

X-+.

Rz+(x-x I )

R:-(x-x:)
i R2+(X'X2) _ _ * (x-x2) }log ----- - lim _ log ---2 - 0

R 2 - (x-x2) x_-_-- (x-x,)

RI+(x'xl)lim 2 2 - 0

x_-_- (Y'Yl) +z

2

{ 1 I BR+(Tx+_ y) } 1lim - _ log 2 = _ log --

x_-= B BR- (Tx+_ y)

B+T

B - T

and therefore this limit is also zero when both corners of the leading or

trailing edges are considered. Since all terms are accounted for, the

perturbation velocities are zero far upstream.

2 2 2 2 2 2 2 2

Since B R (Tx + _ y) = _ [(x-Ty) + B z ]

log

2 2 2 2 2 2

BR+(Tx+_ y) BR+(Tx+_ y) _ [(x-Ty) +B z ]

2 = log 2 2 2 2 - log 2

BR-(Tx+3 y) _ [(x-Ty) +B z ] BR- (Tx+3 y)

there is an apparent singularity along the line

(x-Ty) - 0 , z = 0

However this singularity may be removed by combining the contributions from

both corners of the leading or trailing edges of the panel. Along either of

these edges the values of

(x-xi) T(y-yi) and z

are the same for each of the panel corners.
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2

T(x-x )+_ (y-y) < 0 /

: x /

/
/
/
/
/
/

/
/

/
/

/
/

\
\

I

/
/

/
/

/

/ T(x-x )+fl (y-y)>0

/ I I

/
/

(xl'yl'O)2 /

(x-x2)+fl(Y-Y)2 <0//

////T(x-x^ =

/t/ _)+_

_ (x ,y ,0)

/ \ 2 2
/ \

/ \_ (x - x )
/ \ i

/ \
/ \

\
\

\

(y-y) > 0
2

T(y -y ) - 0

i

2

It can be seen from the above diagram that (Tx + _ y) will have the same

sign on a point (x,y,0) which lies outside the spanwise boundaries of the

quadrilateral. Therefore outside the spanwise boundaries the term

2 2 2

log [(x-Ty) + B z ]

can be canceled by combining both corners, and the resulting term

2

1 I BRI±[T(x'xx)+_ (Y-Yx)]

- _ log 2

B BR2±[T(x'x2)+_ (Y'Y2)]

will not be singular if the correct + or sign is chosen. Within the

spanwise boundary an actual singularity occurs on the panel edge.

x R+x
The term _ log R--xxalso has a possible singularity.

written

This term can be

x R+x x
7 log - _ log

R-x

2

(R+x)

2 2 2

(y+z)

For the source panel the singularity may be removed for points along

2 2

y + z = 0 which are outside of the panel boundaries.
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If (x-xl) and (x-xs) have the same sign the combination of the two terms

gives

i R1+(x'xl) , Rs+(X-Xs) l
log - _ log - ± _ log

RI-(x-x I) Rs-(x-xs)

RI±(x-xz)

Rai(x-x 3 )

where the correct sign is chosen to remove the singularity.

edge the singularity is real and cannot be removed.

On the panel

removable singularity

real singularity

real singularity

2 2

(y-y) + z - 0
I

2 2

(y-y) + z - 0
2

For a vortex panel the terms (subsonic)

1 R+x 1 _ 2 y (R+x)
_- log -- - _" log(y + z ) and -

R-x 2 2
(y+z)

Both have real singularities for x > 0 (downstream) and removable

singularities for x < 0 (upstream). The real singularities occur on the

panel edges and on the edge of the trailing vortex sheet.

2 2 2

as r E (y + z ) _ 0 , and ..(x-xi) < 0 (upstream edge extension)

2

[ [ r 1R - + fir _ l+fli (x'xi) (x-x i) 2

(x-x i)

and combining the contributions from leading and trailing edges,

y [R:+(x-x,)] y [Rs+(x_x3)] ] 2lim 2 2 - 2
2 r r

r _ 0
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VELOCITY FLUX FROM AN INCLINED (BODY) SOURCE PANEL

The perturbation velocity normal to a panel surface is given by the

expression

u • n - un + vn + wn
x y z

^ 2 2 1/2 ^ 2
u nx( n + n ) + w ny z x

2 2 _ 1/2
[_n+n+n]

x y z

^ ^ 2 _ 1/2
[ _ un + w (n +n ) ] n

x y z y+ +

A

v n n
z y

2 _ 1/2 2 _ 2 1/2 2 2 )1/2( n + n ) [ _ n + n + n ] ( n + n
y z x y z y z

+

2 ^ ^ 2 2 1/2 2
[ - _ u n + w ( n + n ) ] n

x y z z

= 2 1/2 2 2 2 1/2
(n +n ) [ _ n + n + n ]

y z x y z

^

v n n
y z

2 1/2
(n +n )

y z

^ ^ 2 2 2 1/2
w + u [ 1 ;_ ] nx( n + n )y z

2 2 2 1/2
[ _ n + n + n ]

x y z

^

Since across the panel surface A u = 0, the rate of outflow from the panel

surface is given by,

^

Aw

2 2 1/2
[ _ n + n + n ]

x y z

^

and since A w = a

across the panel surface

u * n + u • n
+ +

a

2 2 1/2
[ _ n + n + n ]

x y z

where + and - signify the upper and lower surfaces
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SUPERSONICVELOCITIES SPECIALCONSIDERATIONS

The velocity perturbation influence equations for supersonic flows are
treated by taking only the real parts of the expressions. This meansthat

2 2 2 2 1/2
R = Ix + _ (y + z )] is set equal to zero for points which lie outside

the downstream Mach cone from any given corner. Therefore, R and
i R+x

log R-x are zero for points which lie outside the downstream Mach cone.

2 2 2

For B - (T + _ ) > 0, there are no problems using this method.

2 2 2

If B - (T + _ ) < 0 , and _ 2 ] 1/2T+_ - iB where i - J - I

2

I I I 9 (Tx+_ y)+iBR - _!_l tan-i B R
i B 2 _o= 2 B 2

(Tx+_ y)-iBr (Tx+8 y)

and combining two corners,

F 2

2

1 I [T(x-xl)+8 (y-yl)]+BR1 1 1

- _ log 2 - _ log

B [T(x-xl)+_ (y-yl)]-BR I B

2

[T(x'x2)+8 (Y-Y2)]+BR2

2

[T(x-x_)+8 (Y-Y2)]'BR2

i -i
= -- tan

B

2B [T(x-x2)+8 (Y-Y2)] RI 2[T(x-xz)+8 (Y'Yl)] R_

2 2 2

[T(x-x=)+_ (y-y=)l[T(x-xl)+ 8 (Y'Yl)] B Rie 2

If z _ 0 and either R I or R 2 is zero and we allow the other to approach

zero, the value of F 2 becomes

F2 z

B [T(x'xz)

0 [T(x-xl)

2 2

8 (Y'Yl)][T(x-x2) - 8 (Y'Y2)] < 0

2 2

(Y'Yl)][T(x'x2) " 8 (Y'Yl)] > 0

Therefore if R I and R 2 are zero but we are inside the envelope of Mach cones

from the leading edge (see figure 2), the value of F2 is set equal to

F 2 = B

if

2

[T(x-xl) _ (Y-Yl)][T(x-x 2)

2 2

R_ < 0 R2 > 0

2 2 2 2

(x-Ty) > (8 ° T )z

2

(Y'Y2) ] < 0

93



T =. tan ,4 [ (x'xl) T(y.y_ ) ] 2

2 2 " [(×-x 2)

,8 - I" > 0 (X'x_) 2 * 2 2

<# [(Y'Y_) + z ]
2 2

(X'×2) < .8 [(y.y2) 2 2

+z]

- T(y.y2) J
2

2

> (B -:r2)z

2
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F 2 -- 0
/

/

/
/

I
I

/
I

/
/

/
/

/
I

I
/

Figure 2b

x

Y

!_-Ty) < 0

_ "\\ (x-Ty) > 0

\
\

/
I^ \ I
i o \ /
i \

\ /

\ /
L /

/

/

/t

I
I

I

I
I

2 2 2
B -8 - T

I\

\

\

\
\

\
\

I \

l \
I \
l \
I \
i

I

Supersonic Leading Edge Mach Cone Envelope

The intersection of the lines determind by

2 2 2 2
(x-Ty) - (8 -T )z

and

2 2 2 2

x - 8 (y + z )

°ccurs °n the line { y - ax}z - bx

2 2 2

therefore i - 8 (a + b )

2 2 2 2 2

I-2aT+T a = (8 -T )b

2 2 2 2 2 2 2 2 2 2 2
8 (I-2aT+T a ) = (1- 8 a )(8 -T ) = 8 (8 -T )b

4 2 2 2
8 a - 28 Ta + T E 0 =>

4 _ 82 28 b = T =>

therefore the line is determined by

or

2 2 2 2
Tx - B y = 0 ; 8 z = (8

2 2 2

Tx B y = 0 ; (x-Ty) = (8

T2)x 2

2 2
T )z

T2 ]1/2
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2 2
AS T _ _ (sonic leading edge) the value of (T - _ ) _ 0. In this case

(RI-R 2)

T [(x-xl)-T(y-yl) ] '
[(x-xi)-T(y-yl) ] > 0
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SONICEDGES

2 2 2

As B - T +

the function,

0, numerical difficulties arise in the evaluation of

2 2

1 i BR+(Tx+_ y) i i BR+[T(x-Ty)+B y]

- _ log 2 = - _ log 2

B BR-(Tx+_ y) B BR-[T(x-Ty)+B y]

2

However, for small values of B , this function can be easily evaluated

numerically by using a few terms of a series expansion. To generate the

series, first we set

2

a - T(x-TvJ+B Y

2 2 2 2 2

b - ( T - B ) [ (x-Ty) + B z ]

2 2

BR
6 u

b

and therefore

2 2 2

a = BR + b b ( I+6 )

2 2 2 2

aBR - b 6 ( 1+6 )

therefore

2

i BR+[T(x-Ty)+B y] i (1+6)1/2+ 61/2 6

i ; dt
log 2 _ _ log 61/2 =

BR-[T(x-Ty)+B y] (i+6) I/2- 0 [ t(l+t) ]1/2

6

i 131 1351 ]i t + 2 t 3 t + ...
t I/2 2 2 2 ! 2 3 !

0

i 1-3 I 2 1-3-5 i 3 ]61/2 I 6 + 2 6 a 6 + •..
I

3.2 5.2 2! 7.2 3!

I 1-3 i 2 1.3.5 I 3 ][6(I+6)]1/2 I 6 + 2 6 3 6 + ..-
I3.2 5.2 2! 7-2 3!

I 1.3 I 2 1.3-5 i 3• I 6 + _ 6 3 6 + -.. i
2 2 2! 2 3!
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This

aBR [ 2b I --6
3

+

+

+

+

series converges

8

2 5
6

7.9.11

15

2

+

5.9-11-13-17

18

2

+

S 4 7

2 = 2 s 2 4
6 6 + 6

3.5 5.7 5-7.9

8

6

3.7.11.13-17-19

22

2

7.13.17-19-23.25

m m 1

e

rapidly for small

10 11

2 e 2 7
6 6

3.7.11.13 5-9.11.13

16

2

5.11.13.17.19

9

6

19

10 2 11

6 - 6

3.7.13.17.19.23

23

12 2 13

7.17.19.23-25.27

2

values of 6, or small values of B
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TABLEI

TABLEOFDERIVATIVES

2 2 2

r = y+z
2 2 2 2

R = x +fir

0 1

0X 2 log

R+x

R-x

1 10
ax 2 log

B

2

BR+ (Tx+/3 y)

2

BR- (Tx+/3 y)

0 .I
-- tan
8x

zR

2

xy-Tr

O I R+x

8y 2 log
R-x

1 1O
- _" log

Oy B

2

BR+ (Tx+/3 y)

2

BR- (Tx+/3 y)

___ .I
tan

8y

z R

2

xy- Tr

0 x R+x

Oz _" log-
R-x

I
0 x
Oz 2 log

B

2

BR+ (Tx+/3 y)

2

BR- (Tx+/3 y)

tan
8z

zR

2

xy- Tr

/32 2, - i - M

X

i

R

2

i xy-Tr

2 2 2

R [(x-Ty) + B z ]
2

1 z (Tx+/3 y)

R

2

/3y

2 2 2

[(x-Ty) + B z I

I xy

2

R r

2 2

i x(x-Ty) + /3 z

2 2 2

R [(x-Ty) + B z ]

2

i Tz (Tx+fl y)

R

2

/3z

2 2 2

[(x-Ty) + B z ]

I XZ

2

R r

2

i z (Tx+/3 y)

2 2 2

R [(x-Ty) + B z ]

2

1 (x-Ty) (Tx+fl y)

2 2 2

R [(x-Ty) + B z ]
+

2 2 2

B - T+fl

1 XZ

2

R r

i xy

2

R r
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2

p =

TABLE 2

TABLE OF DERIVATIVES

2 2 2 2 2 2 2 2 2 2

7 + _ , R = (f+7) + (b -l)p , T b = T +

R_ R = (f+7)

tan
af

R

2R R : (f+b 7)

2

R+(f+7) i (_" -f7)

R-(f+7)

- _ log
a7 b

2

bR+ (f+b 7)

2

bR- (f+b 7)

2 2

R (7 +_" )

1

R

___ -!
tan

a7

R i _ (f+7)

2 2

R (7+_)

2

(b -i) _"

R+(f+7)

R-(f+7)

- 2 log
ag b

2

bR+ (f+b 7)

2

bR- (f+b 7)

tan
af

R

I { (f+7)
2 2

R (7+g)

2

I g (f+b 7)

2 2 2

R [f +b f ]

2

i f (f+b 7)

2 2 2

R [f +b f ]

i ,7 (f+7)
+

2 2

R (7+f)
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APPENDIXB

SURFACEEDGEFORCES

LEADING EDGE POTENTIAL SUCTION

In the limit as the wing thickness goes to zero, the increasingly

reduced pressure acting over a decreasing area results in a limiting suction

force at the leading edge. If we consider the leading edge region, (figure

I) the force on the airfoil may be obtained by integrating over a control

surface in the flow,

co

x

S

F

n

S

ffF- - [P_ + (p]) u.n] dS

S

Figure I. Leading Edge Suction Region.

where S is a control surface into which the leading edge penetrates and F is

the force on the area enclosed by S. In two dimensions the surface integral

becomes a line integral and since for incompressible, irrotational flow

1 2 2
P=P --p (u+v)2

n dS = dy _ o dx
x y

F _

X

i 2 2 "I
2 p (u + v ) ] dy + pu [u dy - v dx]

_ p= dy + _ p [ [2uv dx + (v2 2- u) dy]

C C

where C is the contour around the leading edge of the airfoil and F
x

force per unit of leading edge length.

is the

As the wing thickness approaches zero, the wing becomes a line segment

(figure 2) and the flow in the leading edge region is identical to the flow

around a 180 degree corner. Incompressibly, it is described by
I01



a

u = cos(8/2)

r
a

u 0 = - -- sin(0/2)

+ U cos 0
oo

- U sin 0

U _

C
_ION

POINT

Figure 2. Wing Represented By Line Segment.

where (r.0) is a coordinate system centered at the leading edge. and

u = Ur cos 0 - u0 sin 8

v = Ur sin 0 + u8 cos 8

dy = R cos(,) d,

dx = - R sin(,) d,

and C is the circle r = R.

Therefore. since

as R_0

P dy = 0

C

u = a [ cos(l,)cos , + sin(_,)sin ,] = a cos(l,)

JR v = a [ cos(l')sin , + sin(l,)cos ,] = a sin(_,)

2

F = pa
X

2_

- cos(F#) sin(T, ) sin , +-_--[ sin (F') - cos (T$)]cos $ d,

0

2f{

I 2 _ 2 2 2

2 pa J [ sin , + cos , ] d, = - _ pa

0

(i)
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To relate -F the leading edge suction force to the pressure distribution
X _ P

near the leading edge, the AC across the line segment must be evaluated.
P

a

On the top 8 - 0 u - -- + U , v - 0

a

On the bottom 0 = 2_ u = -- + U , v - 0

Jx ®

i 4a

AP = -_-p U

and if c is the chord length

4a i

AC - -- ; f = x/c

P u Jc J_

2 2

, I4a1= -- X _"

I _ = c 2 = 8 -
Ct c Az q_ c -_--pU U_ Jc u

A _ _ 4a
or AC - C - -- A A -

p j_ t 8 U J_
oo

These expressions relate the leading edge thrust coefficient to the net

distribution ,ACp, at the leading edge.

In general we can write

co

I ZC (4) = Ao cot(74) + A
p n

n=l

sin(nS)

where

x i 2 1
- c 2 (l-cosS) = sin (74)

1 [ 2,]1/2cos(_4) l-sin (74)

c°t(74) = i = I =

sin(74) sin(74) f

A 0 is the coefficient of the 4 "1/2 term and therefore determines the leading

edge suction force since only the term which is infinite at the leading edge
contributes to the suction.

2

Ct - 8 A° M_ = 0
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For linearized compressible flow the following Mach number correction must

be applied

'lit 2 2 2

ct- --_-P Ao _ - i - M

To derive the expression for a swept wing, an infinitely skewed wing (figure
3) is considered

/
/ I bql ? _ Uo- u cose

/ ! /o
,,_. I,, I

Ay o ._/_ l_y
/

Figure 3. Infinitely Skewed Wing Representation.

Let the subscript or superscript o denote the variables normal to the

leading edge. Then

and

co

o LAC = ]ko cot(4/2) + A sin(n4)
p n

n=l

Ato

Ct o 8 - o_oko
CoAYo q_

the ratio of thrust per unit length is identical in either system

o At° At

CoCto q_ = c Ctq _ = Ay ° = Ay

AC and C in the freestream coordinate system are based on freestream
p t

dynamic pressure q . Thus

0 2

q_ - q_ cos 8

0 0

AC q_ o 2
AC = P = AC cos 0

P q_ P
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and

0

CO q_ 2

C = C cos 8
Ctc - q_ to toc°

therefore A -
n n

2

cos 8

and
2 2 2 2 2 2 2 2

80 - I-M - cos 8 [1/cos 6 -M ] - cos 8 [tan 0 +(I-M )]

2 2 2

- cos # [tan 8 + _ ]

therefore combining terms

0

At _ 2 q. Co

Ct(Y) = CoAY q_ = 8 _°A° q_ c

2 2 1/2
8 cos 8 [ tan 8 + _ ]

2 2

A o cos 8 cos 0

4

cos 0

= 2 I/2A _8 [ tan 8 + _ ]

when AC is given by
P

co

?--AC - Aocot(_) + A sin n_
p n

n=l

SIDE EDGE POTENTIAL SUCTION

The method used to compute the suction force at surface tips is similar

to that used for the leading edge. Since the flow is irrotational

a
-- Au = -- Av
8y ax

i b
Av(x,y) = - ACp(X,y)8x 2 ay

introduce a change of coordinates

let _ be the fraction of chord

T be the slope of a constant f line T - T(_,N)
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dr- l!_ [dx_Tdy ]

c

d_ - dy

5Y

or at

7max- surface tip

[ T(t,_) ACp(t,N) ]

-- [_--]1 e(7)
ACp((,7) 2 07 t

then integrating

i T(t 7) ACp(t,7)av(t,.) - 2 '
0 ,7

Near the tip, we assume a net pressure coefficient of the form

_c (t,7) -
P

I 2l_!__ Z_ (_max -
7max

2 ]1/2 c

CNo f(t),,7 ) J c

nCp(t,.) at

(2)

I

I f(_)dt - i

0

where

2 2 ] 1/2
c i [ 12 (Tmax _ 7 ) CN °

CN c avg 7max

Differentiating

I 7 [ I 2
2 Nmax -2-- (_max

2 ]-i/27)

c

f(t)
c CN o
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Then as _ _ _max' equation 2 gives (keeping only the largest term)

[ _max( _max- _ ) ]-1/2

]_ij2 ;Av(_,N) - 2 Nmax ( Nmax" _ ) Cavg CNo f(x) dX

0

U &v(f,_)- 2 a(f) [ Nmax( _max- _ ) ] "I/2

_> iu -I/2a(f) - 8 _max Cavg CN 0 f(x) dx

0

Using the expression derived for flow around a corner (equation i) in

conjunction with this relation, the suction force at the tip is given by

C (f) = N - 2= I 2 _ avg =
s CTAX q_ cT q_ 2 CTNma x CN o

0

i }2F c i{I_____R__ _ avg =

- 32 CN o f(x) dx df
cT q_o CTr;max 0 0

F 2
____ll__ _ Cavg CT

Srefq = = 32 SrefNma x CN o

1 _ 2

0 0

where cT is the chord dimension at the tip.
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EDGE FORCE AND MOMENT INCREMENTS

To account for edge vortex effects, the linearized forces and moments

are corrected to reflect losses in suction and the associated formation of

vortex forces for leading and side edges. The corrections are applied to

the standard lift, side force and drag coefficients. The corresponding

increments in the total moment coefficients are calculated by applying the

above force increments at the appropriate x,y,z coordinates for the leading

edge stations and center of pressure for the side edges.

For leading edge force calculations, the lost suction force for each

span station is given by

C c As' (i - K )
s s

where C is the coefficient of leading edge suction, c is the local chord,
s

As' is the local span station width and K is the leading edge suction
s

recovery factor. (Ks- I - full suction - no vortex) This force is

subtracted from the direction normal to the section leading edge and re-

entered as a force component rotated ± 90 ° about the leading edge. The sign

of the rotation is determined by the sign of the coefficient A 0 in the

equation for leading edge suction.

The change in the total lift, side force and drag is calculated for

each span station and is written as a function of four coordinate system

rotations whose rotation angles are known from the leading edge geometry.

The origin of each coordinate system is located at the leading edge of the

section camber line.

The first transformation involves the rotation of the system

(x4,y4,z4) , whose x-axis is tangent to the local normal camber line, to the

system (xz,y3,z3) , whose x-axis it tangent to the corresponding chord plane

as indicated in figure 4:

i
z4

z s

normal

camber line

x4 [

Figure 4. Axis of Rotation for First Transformation in Leading Edge Region.
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.I{ (dz/dx) $ F A}
where 6 = -tan [(dz/dx) + (dz/dx) + ) ] / cos

C

(dz/dx)c is streamwise slope due to camber

(dz/dx)
E

is streamwise slope due to twist

(dz/dx)6 F is streamwise slope due to flap deflection

A is the local leading edge sweep angle.

The sweep term converts the total streamwise slope to a slope measured in

the direction normal to the leading edge.

The two coordinates systems are related by the following transformation

matrix:

x s cos6 0 -sin6

Y _ 0 i 0

[ z 3 sin6 0 cos6

{i}Cy4

Z 4

The second transformation involves the rotation of the system

(xs,Y3,Z3), whose y-axis is tangent to the leading edge, to the system

(x_,y2,z2) , whose y-axis is normal to the configuration center line and in

the plane of the surface (figure 5).

leading edge

I V

X 3

- Y2

X 2

Figure 5. Axis of Rotation for Second Transformation in Leading Edge Region.
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The two coordinates systems are related by the following transformation
matrix:

cicx2illJ'ccosA sinA 0 [Cx s

Y2 . - [-slnA cosA cy 3
Cz 2 0 [ z s

The third transformation (figure 6) involves the rotation of the system

(x_,y_,zz) , whose z axis is normal to the local surface plane, to the

system (xl,yl,zl) , whose x, Y2 and z axes are in the body axes direction.

z
z 2

/
_ I m m a

Figure 6. Axis of Rotation for Third Transformation in Leading Edge Region.

The rotation is about the x_, x I axis and of magnitude 0, the local dihedral

angle. The two coordinate systems are related by the following

transformation matrix:

C
x I

C

C
z I

i 0 0

0 cos9 -sinO

0 sinO cosO

C
y_

C
z 2

The fourth and final transformation (figure 7) involves the rotation of

the body axis system (xl,yl,zl) to the wind axes system (D,Y,L).

L zl

D
f

x 1

Figure 7. Axis of Rotation for Fourth Transformation in Leading Edge Region.
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The rotation is about the (yx,Y)-axis and of magnitude _ , the angle of

attack. The coordinate systems are related by the following transformation
matrix:

leDlIcyc°°i llxI0ifl,
CL -sin= 0 cos=j [ z,

The composite transformation between the (x4,y4,z4) coordinate system and

(D,Y,L) coordinate system can then be expressed as

where _ is the rotation matrix obtained from multiplication of the four

previous specified transformation matrices.

Expressing Cx4,Cy 4

parameters,

and C , in terms of the leading edge suction
z 4

C = C c As' __(1-Ks)
x 4 s

C - 0
Y4

C _ I C c As' (I-K)
z4 Ao/ Ao] s s

we can now write the change in drag, side force and lift resulting from the

force rotation at each span station:

A CD - Cs

A Cy - Cs

A CL = Cs

where

_D =

c As' (1-Ks) OD

c As' (1-Ks) Oy

c As' (1"Ks) OL

[cos _ (cos A cos 6) + sin _ (-sin 0 sin A cos 6 + cos 0 sin 6)]

+A0/IAol[-cos a (cos A sin 6) + sin _ (sin 8 sin A sin 6 + cos 8 cos 6)]
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_y = [cos 8 sin A cos 6 + sin 8 sin 6 ]

+Ao/IA01[cos 8 sin A sin 6 - sin 8 cos 6 ]

and

_L - [-sin = (cos A cos 6) + cos = (-sin 8 sin A cos 6 + cos 0 sin 6)]

+A0/IA01[-sin =(-cos A sin 6) + cos = (sin 8 sin A sin 6 + cos 0 cos 6)]

For side edge force calculations, the lost suction force at each chord

station is given by
2

Cs CT A(x/c)

where Cs is the coefficient of side edge suction, c T is the tip chord and

A(x/c) is the local nondimensional chord increment over which C is acting.
S

This force is subtracted from the direction normal to the tip chord and re-

entered as a force component rotated ± 90 ° about the tip chord. The sign of

the rotation is determined by the sign of the coefficient CN0 in the

equation for side edge suction.

In a manner similar to that for the leading edge forces, the change in

the total lift, side force and drag coefficients is calculated for each

chord increment and is written as a function of three coordinate system

rotations whose angles are known from the tip geometry. The origin of each

coordinate system is located on the chord line at the beginning of each

chord increment.

The first transformation (figure 8) involves the rotation of the system

(xs,ys,zs) , whose X axis is parallel to the local camber line, to the system

(x_,y2,z2) , whose axis is tangent to the tip chord.

z 2
z 3

x 2

chordwise

tip camber line

Figure 8. Axis of Rotation for First Transformation Along Chord.

where
-i

6 - tan [ (dz/dx) c + (dz/dx)_ + (dz/dX)6F) ]

(dz/dx)c is streamwise slope due to camber

112



and

(dz/dx)_ is streamwise slope due to twist

(dz/dX)6F) is streamwise slope due to flap deflection

The two coordinate systems are related by the following transformation
matrix:

z= Lsin60 =o_I [z_

The second transformation (figure 9) involves the rotation of the

system (x_,y_,z_), whose y-axis is normal to the tip chord, to the system

(xl,yl,zl) , whose x, y, and z-axes are in the body axes direction.

Y2

z 2

/
Figure 9. Axis of Rotation for Second Transformation Along Chord.

The rotation is about the (x_,yl)-axis and of magnitude 9, the local

dihedral angle. The two coordinate systems are related by the following
transformation matrix:

{ xl}li001f x21cy I = cos# -sin8 icY 2

Z 1 sin8 cosOJ [ z 2
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The third and final transformation (figure I0) involves the rotation of

the body axes system (x 1,yl,zl) to the wind axes system (D,Y,L).

e El

D

Figure i0. Axis of Rotation for Third Transformation Along Chord.

The rotation is about the (y1,Y)-axis and of magnitude _ , the angle of

attack. The two coordinate systems are related by the following

transformation matrix:

cDiIcos0sin. Cy - 0 i 0

iCL -sins 0 cos_

C
X I

C
• Y i

C
Z 1

The transformation between the (x3,y3,z 3) coordinate system and the

(D,Y,L) coordinate system can then be expressed as

T CxCY3

Z 3

where T is the rotation matrix obtained from multiplication of the three

previously specified transformation matrices.

Expressing C , C and C in terms of the side edge suction
X3 Y3 Z3

parameters,
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C -0
x 3

2

C --CsC T A(x/c)Y3

2

Cza - (CNo/ICNol)CsC T A(x/c)

we can now write the change in drag, side force and lift resulting from the

force rotation at each side edge station:

2

AC D - CsC T A(x/c)T D

2

ACy = CsC T A(x/c)Ty

2

AC L = CsC T A(x/c)T L

where

TD = ± sin(_)sin(8) + (CNo/ICNol)[-cos(_)sin(6)+ sin(a)cos(8)cos(6)]

Ty - + cos(0) + (CNo/ICNol)[sin(8)cos(5) ]

TL = ± cos(_)sin(8) + (CNo/ICNol)[sin(a)sin(6)+ cos(_)cos(8)cos(6)]

The minus sign on the first term of each equation is for the right side of

the configuration and the positive sign is for the left side. These force

increments are numerically integrated along each tip chord to obtain the

total change in lift, side force and drag due to side edge force rotation.
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APPENDIXC

HYPERSONICFINITE ELEMENTANALYSIS

High Machnumber analysis has a numberof optional methods for calculating
the pressure coefficient. In each method the only geometric parameter
required is the element impact angle, 6, or the change in the angle of an

element from a previous point.

The methods to be used in calculating the pressure in impact (6 > 0) and

shadow (6 < 0) regions may be specified independently. A summary of the

program pressure options is presented below.

i*

.

3.

4.

5.

6.

7.

8.

9.

i0

ii

12

13

14

15

16

Impact Flow

Modified Newtonian

Modified Newtonian+Prandtl-Meyer

Tangent wedge

Tangent-wedge empirical

Tangent-cone empirical

OSU blunt body empirical

Van Dyke Unified

Blunt-body skin friction model

Shock-expansion

Free molecular flow

Input pressure coefficient

Hankey flat-surface empirical

Delta wing empirical

Dahlem-Buck empirical
Blast wave

Modified tangent-cone

Shadow Flow

i. Newtonian (Cp - 0)

2. Modified Newtonian+Prandtl-Meyer

3. Prandtl-Meyer from free-stream

4. OSU blunt body empirical

5. Van Dyke Unified

6. High Mach base pressure

7. Shock-expansion

8. Input pressure coefficient
9. Free molecular flow

CL and CD are in the stability axis system. Other coefficients are in the

body reference coordinated system. It should also be noted that side force

and pitching moment coefficients are invariant in an (_,_) transformation,

whereas the yawing and rolling moment coefficents are not invariant.

A brief review of these methods will be presented in the following text.

MODIFIED NEWTONIAN

This method is probably the most widely used of all the hypersonic force

analysis techniques. The major reason for this is its simplicity. Like all

the force calculation methods, however, its validity in any particular

application depends upon the flight condition and the shape of the vehicle
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or componentbeing considered.
shapes at high hypersonic speed.
pressure coefficient is

Its most general application is for blunt
The usual form of the modified Newtonian

C
P

2

- K sin 6

In true Newtonian flow (M - _ , 7 - i) the parameter K is taken as 2. In

the various forms of modified Newtonian theory, K is given values other than

2 depending on the type of modified Newtonian theory used. K is frequently

taken as being equal to the stagnation pressure coefficient. In other forms

it is determined by the following relationship (Reference 19).

2

K - C /sin 6
Pnose nose

where

C

Pnose

the exact value of the pressure

coefficient at the nose or leading

edge

nose

impact angle at the nose or leading

edge

In other work K is determined purely on an empirical basis.

K - fn (M, _, shape)

When modified Newtonian theory is used, the pressure coefficient in shadow

regions (6 < 0) is usually set equal to zero.

MODIFIED NEWTONIAN PLUS PRANDTL-MEYER

This method, described as the blunt body Newtonian + Prandtl-Meyer

technique, is based on the analysis presented by Kaufman in Reference 20.

The flow model used in this method assumes a blunt body with a detached

shock, followed by an expansion around the body to supersonic conditions.

This method uses a combination of modified Newtonian and Prandtl-Meyer

expansion theory. Modified Newtonian theory is used along the body until a

point is reached where both the pressure and the pressure gradients match

those that would be calculated by a continuing Prandtl-Meyer expansion.

The calculation procedure derived for determining the pressure coefficient

using the blunt body Newtonian + Prandtl-Meyer technique is outlined below.

I. Calculate free-stream static to stagnation pressure ratio

{ 2 ](7/(7"I)){ _ }(1/(7 "1))P = P_/P0 = 2/[(7 + I) M ]_ [27M - (7 - 1)]/(7 + i)
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. Assume a starting value of the matching Mach number, M
q

assume M m 1.35)
q

(for 7 - 1.4

3. Calculate matching point to free-stream static pressure ratio

2 _(vl(v-l))

Q = Pq/Po = {2/[2 + (7 - l)Mql_

4. Calculate new free-stream static to stagnation pressure ratio

Pc - Q i - (7 MqQ)/[4(Mq- i)(I Q)]

5. Assume a new matching point Mach number (1.75) and repeat the above

steps to obtain a second set of data.

6. With the above two tries use a linear interpolation equation to

estimate a new matching point Mach number. This process is repeated

until the solution converges.

7. Calculate the surface slope at the matching point

2

sin(6q) - (Q - P)/(I - P)

8. Use the Prandtl-Meyer expansion equations to find the Mach number on

the surface element, M 6

9. Calculate the surface pressure ratio

2 -(71(_-I))
- _c[l + (7 - 1)/(2) M6]

I0.

P6/P0

where

_c

P6

II.

is provided as an empirical correction factor

is the pressure on the element of interest

Calculate the surface to free-stream pressure ratio

P6/P = (l/P) (P6/P0)

Calculate the surface pressure coefficient

2

CP6 - 2/(7M )(P6/P _ - i)
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The results of typical calculations using the above procedure are shown in

Figure I. Note that the calculations give a positive pressure coefficient

at a zero impact angle. As pointed out in several references these results

correlate well with test data for blunt shapes. However, if the surface

curvature changes gradually to zero slope some distance from the blunt

stagnation point the pressure calculated by this method will be too high.

This is caused by characteristics near the nose intersecting the curved

shock system and being reflected back onto the body. If the zero slope is

reached near the nose (such as in a hemisphere or a cylinder) this effect

has not had time to occur.

TANGENT-WEDGE

The tangent-wedge and tangent-cone theories are frequently used to calculate

the pressures on two-dimensional bodies and bodies of revolution,

respectively. These methods are really empirical in nature since they have

no firm theoretical basis. They are suggested, however, by the results of

more exact theories that show that the pressure on a surface in impact flow

is primarily a function of the local impact angle. In this program the

tangent-wedge pressures are calculated using the oblique shock relationships

of NACA TR-II35 (Reference 21). The basic equation used is the cubic given

by

or

2 3 2 2 2

[sin(0s) ] + b[sin(Ss) ] + c[sin(Ss) ] + d - 0

3 2

R + bR + cR +d=0

where

8 - shock angle
S

6 - wedge angle

2 2 2

b - -(M + 2)/M - 7 sin(6)

2 4 2 2 2

(2M + I)/M + [(7 + i) /4 + (7 I)/M ] sin(6)

2 4

d - cos(6)/M
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Figure I. Blunt Body Newtonian + Prandtl-Meyer Pressure Results.
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The roots of the above cubic equation maybe obtained by using the
trigonometric solution procedure (see Reference 22) as indicated below.

Yl - 2 _-p/3 cos (w/3) b/3

Y2 -
o

-2 ,/-p/3 cos (w/3 + 60 ) b/3

where

Y3 - -2 J-p/3 cos (w/3 - 60

RI - Yl - b/3

R2 - Y2 " b/3

R3 = Y3 " b/3

Yi

o

) b/3

roots of the reduced cubic equation

2

p - -(b /3) + c

3

q = 2(b/3) - bc/3 + d

3

cos(w) - -q/(2J- (p/3))

2

R i = sin(Ss) = roots of the cubic equation

The smallest of the three roots corresponds to a decrease in entropy and is

disregarded. The largest root is also disregarded since it never appears in

physical actuality.

For small deflections, the cubic solution becomes very sensitive to

numerical accuracy; that is, to the number of significant digits carried.

Since this is dependent on the particular machine employed, an alternate

procedure is used.

When the flow deflection angle is equal to or less than 2.0 degrees, the

following equation is used instead of the above cubic relationships

(Reference 23):

2 2 2

sin(0s) - I/M + (7 + 1)/(2) 6 /JM i
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Oncethe shock angle is obtained the remaining flow properties maybe found
from the relationship of Reference 21.

density 2 2 2 2 }P2= p [6M sin(Ss)]/[M sin(0 s) + 5]

temperature 2 2 2 2 2 2 "_T2= T [7(M sin(0s)-l)(M sin(#s)+5)]/[36M sin(Ss)]

pressure

coefficient - C - [7M sin(0s)-l]/6 /(0.7M )P

where

( )2
conditions behind the shock

Oblique shock detachment conditions are reached when no solution may be

found to the above cubic relationships. Under these conditions the program

uses the Newtonian + Prandtl-Meyer method for continued calculations.

TANGENT-WEDGE, TANGENT-CONE, AND DELTA WING

NEWTONIAN EMPIRICAL METHOD

The tangent-cone and the tangent-wedge (figure 2) Newtonian empirical

methods used in this program are based on the empirical relationships

derived below.

d

Figure 2. Tangent-Cone and Wedge Notations.

For wedge flow

sin(0s) =

where

sin(6w)/[(l - _)cos(0 s- 6w)]

= p/p2 = (3' i)/(7 + i) i + 2/[(7 - l)Mns ]
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For cone flow (thin shock layer assumption)

sin(Ss) = sin(6c)/[(l _/2)cos(0s- 6c)]

In the limit as M _ _, c = _ lim - (7 - 1)/(7 + I) and coS(Ss- 6) - i

Therefore

cone

sin(8 s) - (7 + 1)/2 sin(6 w) sin(0 s) - 2(7 + 1)/(7 + 3) sin(6 c)

These limiting expressions for 8 may now be compared with the data of TR-

1135 (Reference 21) at 7 - 7/5 using the following similarity parameters.

The exact equations contain three variables - 0 6 and e. Noting that for
S t

7 - constant, _ = fn (Mns) only, the preceding equations may be rewritten in

the following form:

cone

M - M sin(6w)/[(l-_)cos(8 s- 6w)]
ns

M - M sin(6w)/[(l-_)cos(O s- 6w)]
ns

The parameter (8 - 6) is approximately constant and independent of M except

near the shock detachment condition. The equations essentially contain only

two variables, M and M sin 6. These are used as coordinates to plot the
ns

data for wedge flow shown in Figure 3. A similar plot could be obtained for

cone flow. From the figure it is seen that the data are nearly normalized

with the use of these coordinates.

For rapid calculation we need relationships for M as a function of Mns

sin(6)that satisfy the following requirements:

i. The effect of shock detachment is neglected

2. At M sin(6) = 0, M - i
ns

3. The solution asymptotically approaches the M - _ line

4. Have the correct slope, d[Mns] / d[M sin(6)] at M sin(6)- 0

These conditions lead to equations of the following form

wedge M - K M' + e-(% M'/2)
ns w

K - (7 + 1)/2
W
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Figure 3. Wedge Flow Shock Angle.
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cone M
ns

- K M' + e''KcM''(_
W

where

M' = M sin(6)

K
C

2(v + 1)/(v + 3)

These expressions are compared with the data of TR-II35 in Figures 4 and 5.

The cone data are also shown in Figure 6 with the same scales as in Figure

3.

The pressure coefficient may now be obtained by the following relationships

for a wedge and cone respectively.

2 2

C - 4/(7 + l)(Mns- I)/M
P

C - 2sin(6) i - [(7 - l)Mns + 2]/[4(7 + l)Mns]
P

Experimental results have shown the pressure on the centerline of a delta

wing to be in agreement with two-dimensional theory at small values of the

similarity parameter (M'<3.0) and with conical flow theory at higher values.

The previous expressions derived for wedge and cone flows have been combined

to give these features. The resulting relationships are given below.

M = K M' + e-(Kc'Kw/2)M'
ms c

For 7 - 7/5

M
ns

-(0.49Msin(6))
- 1.09Msin(6) + e

The similarity parameter relationship for pressure is

2 2

M C - (4/(7 + l)(Mns- i)
P

The shock angle and pressure coefficient calculated from the above equations

are compared with the experimental results (Reference 28) in Figures 7 and 8

respectively.
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Figure 4. Wedge Flow Shock Angle Empirical Correlation.
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Figure 6. Conical Flow Shock Angle Empirical Correlation.
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Figure 7. Delta Wing Centerline Shock Angle Correlation.
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OSU BLUNT BODY EMPIRICAL METHOD

The OSU (Ohio State University) blunt body empirical equation describes the

pressure distribution about cylinders in supersonic flow. The equation was

presented in Reference 25 and was stated to match "all the data obtained on

the cylinders in the present test series with a maximum deviation of 2.5

percent." The expression used is

PI/Pt - 0.32 + 0.455 cos(#) + 0.195 cos(2#) + 0.035 cos(39) - 0.005 cos(48)

where

peripheral angle on a cylinder
o

(- 0 at the stagnation point) - (90 8)

PI - surface pressure

P
t

oo

total pressure rise through normal shock

The pressure coefficient is calculated from the relationship

C
P

2

[(PI/Pt )(Pt /P_) - I]/(TM /2)
oo co

where

Pt /P_

2

KTM /2 + I

K stagnation pressure coefficient = C

Pstag

P_ - freestream pressure

7 = ratio of specific heats = 1.4

VAN DYKE UNIFIED METHOD

This force calculation method is based on the unified supersonic-hypersonic

small disturbance theory proposed by Van Dyke in Reference 26 as applied to

basic hypersonic similarity results. The method is useful for thin profile

shapes and as the name implies extends down to the supersonic speed region.

The similarity equations that form the basis of this method are derived by

manipulating the oblique shock relations for hypersonic flow. The basic

derivations are shown on pages 753 and 754 of Reference 31. The result
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obtained for a compression surface under the assumption of a small
deflection angle and large Machnumber is (hypersonic similarity equation).

C
P

2 2 2

6 [(7 + 1)/2 + J((? + 1)/2) + 4/H ]

where H is the hypersonic similarity parameter given by M6. The

contribution by Van Dyke in Reference 26 suggests that this relationship

will also be valid in the realm of supersonic linear theory if the

2

hypersonic similarity parameter (JM - i )6. This latter parameter is used

in the calculations for this force option in the arbitrary body program.

A similar method may also be obtained for a surface in expansion flow with

no leading edge shock such as on the upper side of an airfoil. The

resulting equation is

. .{ ,, }C - 6 [2/(7H )] [(I-(7 - I)H_2). (27/(7"I) i
P

2

where again H is taken to be (JM i )6 in the unified theory approach.

SHOCK-EXPANSION METHOD

This force calculation method is based on classical shock-expansion theory

(see Reference 27). In this method the surface elements are handled in a

"strip-theory" manner. The characteristics of the first element of each

longitudinal strip of elements may be calculated by oblique shock theory, by

conical flow theory, or by a Prandtl-Meyer expansion. Downstream of this

initial element the forces are calculated by a Prandtl-Meyer expansion.

By a proper selection of the element orientation the method may be used for

both wing-like shapes and for more complex body shapes. In this latter case

the method operates in a hypersonic shock-expansion theory mode.

FREE MOLECULAR FLOW METHOD

At very high altitudes conventional continuum flow theories fail and one

must begin to consider the general macroscopic mass, force, and energy

transfer problem at the body surface. This condition occurs when the air is

sufficiently rarefied so that the mean free path of the molecules is much

greater than a characteristic body dimension. This condition is known as

free molecular flow and the method of analysis selected for this program is
described in Reference 28. This method was also used in Reference 29. The

equations used were taken from these references and are presented below.
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Pressure coefficient

C - S [(2-fn)/J_- S sin(6) + fn/2 JTb/T _ ] e
P

2
- (S sin(6))

2 2 __ _ "_

+ [(2-fn)(S sin(6) + 1/2) + fn/2_ _Tb/T S sin(6)][l + erf(S sin(6))]

Shear force coefficient

2

Cf- [cos(6)ft]/(_-S){e'(S sin(6))+ J_-S sin(6)[l + erf (S sin(6))]}

where

f
n

T n

erf -

speed ratio = JT/2 M

normal momentum accommodation coefficient

1.0 for Newtonian

0.0 for completely diffuse reflection)

impact angle

o

body temperature, K

o

free-stream temperature, K

x 2
-- -X

error function erf (x) _ 2_ f e dx
0

ft tangential momentum accommodation coefficient

0.0 for Newtonian flow

1.0 for completely diffuse reflection

The pressure force acts perpendicular to the surface and this direction is

readily obtained since the element normal has already been determined in the

geometry subroutines. The shear force acts in the direction of the

tangential velocity component on the surface and this direction is

determined by taking successive vector products. The procedure is

illustrated in figure 9 where the incident velocity vector is defined as

- V x i + Vy j + V z k
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and the surface normal as

N _ Nx i + Ny j + Nz k

Figure 9. Force Components on a Surface

First, a surface tangent vector (T) is defined by the cross product of the

normal and velocity vectors;

-+

T

where

TX

Ty

TZ

4 -_ -+

TX i + Ty j + T Z k

- Ny V Z - N Z Vy

- NZ VX - NX V Z

- NX Vy - Ny VX

Then the direction of the shear force (S) is given by the cross product of

the surface tangent and normal vectors;

- SX i + Sy j + SZ k

-+

S

where

SX

Sy

SZ

- TyNz -Tz Ny

- T z Nx - Tx NZ

- TX Ny - Ty NX

The final components of the shear force in the vehicle axis system are given

by
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SHEARX - (SHEAR)(Sx) / STOTAL

SMEARy - (SHEAR) (Sy) / STOTAL

SHEAR Z - (SHEAR) (Sz) / STOTAL

where

SHEAR is the shear force as calculated by the free molecular flow

equations.

2 2 2 1/2

STOTAL - (Sx + Sy + SZ )

In using the free molecular flow method the above analysis must be carried

out over the entire surface of the shape including the base, shadow regions,

etc. When the free molecular flow method is selected, it is used for both

impact and shadow region.

The plane formed by the velocity vector and the surface normal is referred

to as the velocity plane (shaded region in the sketch), since both the

incident and surface velocity are in this plane. This definition is correct

for two-dimensional flow, however, it is only an approximation to the shear

direction in the general arbitrary-body case.

HANKEY FLAT-SURFACE EMPIRICAL METHOD

This method uses an empirical correlation for lower surface pressures on

blunted flat plates. The method, derived in Reference 30, approximates

tangent-wedge at low impact angles and approaches Newtonian at high impact

angles. The pressure coefficient is given by

C
P

2

1.95 sin(6) + 0.21 cos(6)sin(6)

DAHLEM-BUCK EMPIRICAL METHOD

This is an impact method that has been derived such that tangent-cone and

Newtonian results are approximated, respectively, at low and high values of

the impact angle. The empirical relationships presented in Reference 31 are

for o { }6 < 22.5 C I + [sin(46)] 3/4P - sin(6)5/4/[4cos(6)cos (26) ]3/4

o 2

for 6 _> 22.5 C = 2.0 sin(6)
P
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BLAST WAVE PRESSURE INCREMENTS

This method uses conventional blast-wave parameters to calculate the

overpressure due to bluntness effects. Force contributions determined by

this procedure must be added to the regular inviscid pressure forces

(tangent-wedge, tangent-cone, Newtonian, etc.) calculated over the same

vehicle geometry. The specific blast wave solutions used in the Program

were derived by Lukasiewicz in Reference 32:

where

2
P/P - A M }<2+j)/3(CD)(I/(I+J))/[(X 0- X)/d] + B

CD is the nose drag coefficient

d is the nose diameter or thickness

X 0 is a coordinate reference point

and the coefficients A, B are

Flow ] ]

Two dimensional 0

Axisymmetric i

A B

0.121 0.56

0.067 0.44

MODIFIED TANGENT-CONE METHOD

This method, originally developed for use on cones with elliptical cross

sections, modifies the tangent-cone result by an increment representing the

deviation from an average pressure divided by an average Mach number. More

specifically, the following equations are used (after Jacobs, Reference 33):

C - C - - C )/Mavg
P Ptc (Cptc Pavg

where C
P

is the surface pressure coefficient

C

Ptc
is the conventional tangent-cone pressure coefficient
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C
Pavg

is the average pressure coefficient

A is element area

M is the average Machnumber, defined for an equivalent
avg

cone having pressure coefficient C
Pavg

HIGH MACH BASE PRESSURES

For a body in high speed flow it might be expected that any base regions

would experience total vacuum. That is,

2

c - II(7M®12)
P

However, the viscosity of real gases causes some pressure to be felt in base

region and experimental data have shown this to be roughly 70% vacuum for

air. Therefore, the expression

2
C - -I/M_
P

has been included in the program.
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